Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783381

ABSTRACT

MicroRNAs (miRNAs) are critical post-transcriptional regulators in many biological processes. They act by guiding RNA-induced silencing complexes to miRNA response elements (MREs) in target mRNAs, inducing translational inhibition and/or mRNA degradation. Functional MREs are expected to predominantly occur in the 3' untranslated region and involve perfect base-pairing of the miRNA seed. Here, we generate a high-resolution map of miR-181a/b-1 (miR-181) MREs to define the targeting rules of miR-181 in developing murine T cells. By combining a multi-omics approach with computational high-resolution analyses, we uncover novel miR-181 targets and demonstrate that miR-181 acts predominantly through RNA destabilization. Importantly, we discover an alternative seed match and identify a distinct set of targets with repeat elements in the coding sequence which are targeted by miR-181 and mediate translational inhibition. In conclusion, deep profiling of MREs in primary cells is critical to expand physiologically relevant targetomes and establish context-dependent miRNA targeting rules.

2.
Nat Protoc ; 19(4): 1183-1234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278964

ABSTRACT

Despite crucial roles of RNA-binding proteins (RBPs) in plant physiology and development, methods for determining their transcriptome-wide binding landscape are less developed than those used in other model organisms. Cross-linking and immunoprecipitation (CLIP) methods (based on UV-mediated generation of covalent bonds between RNAs and cognate RBPs in vivo, purification of the cross-linked complexes and identification of the co-purified RNAs by high-throughput sequencing) have been applied mainly in mammalian cells growing in monolayers or in translucent tissue. We have developed plant iCLIP2, an efficient protocol for performing individual-nucleotide-resolution CLIP (iCLIP) in plants, tailored to overcome the experimental hurdles posed by plant tissue. We optimized the UV dosage to efficiently cross-link RNA and proteins in plants and expressed epitope-tagged RBPs under the control of their native promoters in loss-of-function mutants. We select epitopes for which nanobodies are available, allowing stringent conditions for immunopurification of the RNA-protein complexes to be established. To overcome the inherently high RNase content of plant cells, RNase inhibitors are added and the limited RNA fragmentation step is modified. We combine the optimized isolation of RBP-bound RNAs with iCLIP2, a streamlined protocol that greatly enhances the efficiency of library preparation for high-throughput sequencing. Plant researchers with experience in molecular biology and handling of RNA can complete this iCLIP2 protocol in ~5 d. Finally, we describe a bioinformatics workflow to determine targets of Arabidopsis RBPs from iCLIP data, covering all steps from downloading sequencing reads to identifying cross-linking events ( https://github.com/malewins/Plant-iCLIPseq ), and present the R/Bioconductor package BindingSiteFinder to extract reproducible binding sites ( https://bioconductor.org/packages/release/bioc/html/BindingSiteFinder.html ).


Subject(s)
Nucleotides , RNA , Animals , RNA/genetics , Nucleotides/metabolism , Protein Binding , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Binding Sites , Ribonucleases/metabolism , Immunoprecipitation , High-Throughput Nucleotide Sequencing/methods , Mammals/genetics
3.
Nucleic Acids Res ; 51(2): 870-890, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36620874

ABSTRACT

Hypoxia induces massive changes in alternative splicing (AS) to adapt cells to the lack of oxygen. Here, we identify the splicing factor SRSF6 as a key factor in the AS response to hypoxia. The SRSF6 level is strongly reduced in acute hypoxia, which serves a dual purpose: it allows for exon skipping and triggers the dispersal of nuclear speckles. Our data suggest that cells use dispersal of nuclear speckles to reprogram their gene expression during hypoxic adaptation and that SRSF6 plays an important role in cohesion of nuclear speckles. Down-regulation of SRSF6 is achieved through inclusion of a poison cassette exon (PCE) promoted by SRSF4. Removing the PCE 3' splice site using CRISPR/Cas9 abolishes SRSF6 reduction in hypoxia. Aberrantly high SRSF6 levels in hypoxia attenuate hypoxia-mediated AS and impair dispersal of nuclear speckles. As a consequence, proliferation and genomic instability are increased, while the stress response is suppressed. The SRSF4-PCE-SRSF6 hypoxia axis is active in different cancer types, and high SRSF6 expression in hypoxic tumors correlates with a poor prognosis. We propose that the ultra-conserved PCE of SRSF6 acts as a tumor suppressor and that its inclusion in hypoxia is crucial to reduce SRSF6 levels. This may prevent tumor cells from entering the metastatic route of hypoxia adaptation.


Subject(s)
Cell Hypoxia , Nuclear Speckles , RNA Splicing , Serine-Arginine Splicing Factors , Humans , Alternative Splicing , Exons/genetics , Phosphoproteins/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , HeLa Cells
4.
Cancer Res ; 82(7): 1380-1395, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35105690

ABSTRACT

The activation and differentiation of cancer-associated fibroblasts (CAF) are involved in tumor progression. Here, we show that the tumor-promoting lipid mediator prostaglandin E2 (PGE2) plays a paradoxical role in CAF activation and tumor progression. Restricting PGE2 signaling via knockout of microsomal prostaglandin E synthase-1 (mPGES-1) in PyMT mice or of the prostanoid E receptor 3 (EP3) in CAFs stunted mammary carcinoma growth associated with strong CAF proliferation. CAF proliferation upon EP3 inhibition required p38 MAPK signaling. Mechanistically, TGFß-activated kinase-like protein (TAK1L), which was identified as a negative regulator of p38 MAPK activation, was decreased following ablation of mPGES-1 or EP3. In contrast with its effects on primary tumor growth, disruption of PGE2 signaling in CAFs induced epithelial-to-mesenchymal transition in cancer organoids and promoted metastasis in mice. Moreover, TAK1L expression in CAFs was associated with decreased CAF activation, reduced metastasis, and prolonged survival in human breast cancer. These data characterize a new pathway of regulating inflammatory CAF activation, which affects breast cancer progression. SIGNIFICANCE: The inflammatory lipid prostaglandin E2 suppresses cancer-associated fibroblast expansion and activation to limit primary mammary tumor growth while promoting metastasis.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Carcinoma , Animals , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Carcinoma/pathology , Dinoprostone/metabolism , Female , Fibroblasts/metabolism , Humans , Mice , Prostaglandin-E Synthases/genetics , Prostaglandin-E Synthases/metabolism , Prostaglandin-E Synthases/pharmacology
5.
Life Sci Alliance ; 4(3)2021 03.
Article in English | MEDLINE | ID: mdl-33376132

ABSTRACT

In pancreatic ß-cells, the expression of the splicing factor SRSF6 is regulated by GLIS3, a transcription factor encoded by a diabetes susceptibility gene. SRSF6 down-regulation promotes ß-cell demise through splicing dysregulation of central genes for ß-cells function and survival, but how RNAs are targeted by SRSF6 remains poorly understood. Here, we define the SRSF6 binding landscape in the human pancreatic ß-cell line EndoC-ßH1 by integrating individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) under basal conditions with RNA sequencing after SRSF6 knockdown. We detect thousands of SRSF6 bindings sites in coding sequences. Motif analyses suggest that SRSF6 specifically recognizes a purine-rich consensus motif consisting of GAA triplets and that the number of contiguous GAA triplets correlates with increasing binding site strength. The SRSF6 positioning determines the splicing fate. In line with its role in ß-cell function, we identify SRSF6 binding sites on regulated exons in several diabetes susceptibility genes. In a proof-of-principle, the splicing of the susceptibility gene LMO7 is modulated by antisense oligonucleotides. Our present study unveils the splicing regulatory landscape of SRSF6 in immortalized human pancreatic ß-cells.


Subject(s)
Alternative Splicing/genetics , Gene Expression Regulation , Insulin-Secreting Cells/metabolism , Phosphoproteins/metabolism , RNA/metabolism , Serine-Arginine Splicing Factors/metabolism , Binding Sites , Cell Line , Cell Survival/genetics , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 2/genetics , Exons , Gene Knockdown Techniques , Humans , LIM Domain Proteins/genetics , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Maps , Serine-Arginine Splicing Factors/chemistry , Serine-Arginine Splicing Factors/genetics , Transcription Factors/genetics , Transcriptome , Transfection
6.
PLoS Genet ; 16(1): e1008581, 2020 01.
Article in English | MEDLINE | ID: mdl-31978041

ABSTRACT

Makorins are evolutionary conserved proteins that contain C3H-type zinc finger modules and a RING E3 ubiquitin ligase domain. In Drosophila, maternal Makorin 1 (Mkrn1) has been linked to embryonic patterning but the mechanism remained unsolved. Here, we show that Mkrn1 is essential for axis specification and pole plasm assembly by translational activation of oskar (osk). We demonstrate that Mkrn1 interacts with poly(A) binding protein (pAbp) and binds specifically to osk 3' UTR in a region adjacent to A-rich sequences. Using Drosophila S2R+ cultured cells we show that this binding site overlaps with a Bruno1 (Bru1) responsive element (BREs) that regulates osk translation. We observe increased association of the translational repressor Bru1 with osk mRNA upon depletion of Mkrn1, indicating that both proteins compete for osk binding. Consistently, reducing Bru1 dosage partially rescues viability and Osk protein level in ovaries from Mkrn1 females. We conclude that Mkrn1 controls embryonic patterning and germ cell formation by specifically activating osk translation, most likely by competing with Bru1 to bind to osk 3' UTR.


Subject(s)
Body Patterning , Drosophila Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , RNA-Binding Proteins/metabolism , 3' Untranslated Regions , Animals , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Gene Expression Regulation, Developmental , Humans , Intracellular Signaling Peptides and Proteins/genetics , Ovary/metabolism , Protein Binding
7.
Methods ; 178: 49-62, 2020 06 01.
Article in English | MEDLINE | ID: mdl-31751605

ABSTRACT

Precise knowledge on the binding sites of an RNA-binding protein (RBP) is key to understanding the complex post-transcriptional regulation of gene expression. This information can be obtained from individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) experiments. Here, we present a complete data analysis workflow to reliably detect RBP binding sites from iCLIP data. The workflow covers all steps from the initial quality control of the sequencing reads up to peak calling and quantification of RBP binding. For each tool, we explain the specific requirements for iCLIP data analysis and suggest optimised parameter settings.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Immunoprecipitation/methods , RNA/isolation & purification , Binding Sites/genetics , Gene Expression Regulation/genetics , Humans , Protein Binding/genetics , RNA/chemistry , RNA/genetics
8.
Genome Biol ; 20(1): 216, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31640799

ABSTRACT

BACKGROUND: Cells have evolved quality control mechanisms to ensure protein homeostasis by detecting and degrading aberrant mRNAs and proteins. A common source of aberrant mRNAs is premature polyadenylation, which can result in non-functional protein products. Translating ribosomes that encounter poly(A) sequences are terminally stalled, followed by ribosome recycling and decay of the truncated nascent polypeptide via ribosome-associated quality control. RESULTS: Here, we demonstrate that the conserved RNA-binding E3 ubiquitin ligase Makorin Ring Finger Protein 1 (MKRN1) promotes ribosome stalling at poly(A) sequences during ribosome-associated quality control. We show that MKRN1 directly binds to the cytoplasmic poly(A)-binding protein (PABPC1) and associates with polysomes. MKRN1 is positioned upstream of poly(A) tails in mRNAs in a PABPC1-dependent manner. Ubiquitin remnant profiling and in vitro ubiquitylation assays uncover PABPC1 and ribosomal protein RPS10 as direct ubiquitylation substrates of MKRN1. CONCLUSIONS: We propose that MKRN1 mediates the recognition of poly(A) tails to prevent the production of erroneous proteins from prematurely polyadenylated transcripts, thereby maintaining proteome integrity.


Subject(s)
Nerve Tissue Proteins/metabolism , Protein Biosynthesis , Ribonucleoproteins/metabolism , 3' Untranslated Regions , HEK293 Cells , Humans , Poly(A)-Binding Protein I/metabolism , RNA, Messenger/metabolism , Ubiquitination
9.
Int J Mol Sci ; 20(18)2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31505876

ABSTRACT

: Cancer-associated fibroblasts (CAFs) in the tumor microenvironment contribute to all stages of tumorigenesis and are usually considered to be tumor-promoting cells. CAFs show a remarkable degree of heterogeneity, which is attributed to developmental origin or to local environmental niches, resulting in distinct CAF subsets within individual tumors. While CAF heterogeneity is frequently investigated in late-stage tumors, data on longitudinal CAF development in tumors are lacking. To this end, we used the transgenic polyoma middle T oncogene-induced mouse mammary carcinoma model and performed whole transcriptome analysis in FACS-sorted fibroblasts from early- and late-stage tumors. We observed a shift in fibroblast populations over time towards a subset previously shown to negatively correlate with patient survival, which was confirmed by multispectral immunofluorescence analysis. Moreover, we identified a transcriptomic signature distinguishing CAFs from early- and late-stage tumors. Importantly, the signature of early-stage CAFs correlated well with tumor stage and survival in human mammary carcinoma patients. A random forest analysis suggested predictive value of the complete set of differentially expressed genes between early- and late-stage CAFs on bulk tumor patient samples, supporting the clinical relevance of our findings. In conclusion, our data show transcriptome alterations in CAFs during tumorigenesis in the mammary gland, which suggest that CAFs are educated by the tumor over time to promote tumor development. Moreover, we show that murine CAF gene signatures can harbor predictive value for human cancer.


Subject(s)
Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , Mammary Glands, Animal/metabolism , Mammary Neoplasms, Animal/metabolism , Transcription, Genetic , Animals , Female , Fibroblasts/pathology , Mammary Glands, Animal/pathology , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/pathology , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...