Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 105(11): 8705-8717, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36175240

ABSTRACT

Somatic cell count (SCC) in milk is an essential indicator for defining and managing udder health. However, analyzing differential SCC (dSCC) can be helpful in determining the type or evolution stage of mastitis. A high abundance of polymorphonuclear cells (PMN) is associated with acute mastitis; however, the status of a chronic disease is less well characterized. A method capable of analyzing SCC and dSCC can prove to be a helpful tool for monitoring the status of evolution of mastitis disease in a better way. Therefore, a new direct-flow cytometry method was developed to count and differentiate somatic cells in milk without the steps of centrifugation or washing, avoiding variabilities that occur due to enrichment or loss of specific cell types. In this new method, SCC is analyzed using the method of DNA staining with Hoechst stain, whereas dSCC are analyzed using specific antibodies targeting 2 main cell types associated with mastitis: PMN cells and antigen-presenting cells, which are associated with innate and adaptive immunity. Equivalent SCC values were obtained between the new method and the routine ISO 13366-2 method in a comparison of 240 raw milk samples. Furthermore, dSCC results were confirmed by microscopy after May-Gründwald-Giemsa staining in 165 quarter milk samples from healthy and diseased cows. The method was verified with fluorescence microscopy on the 2 targeted cell types and in raw milk samples. The newly developed method is independent of any instrument and can be further designed to differentiate other cell types and animal species by selecting appropriate antibodies.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Female , Cattle , Animals , Milk , Flow Cytometry/veterinary , Cell Count/veterinary , Cell Count/methods , Mammary Glands, Animal , Centrifugation/veterinary
2.
Data Brief ; 21: 911-917, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30426045

ABSTRACT

The data in this article are related to the research article entitled "Physiological comparability of the harmonized INFOGEST in vitro digestion method to in vivo pig digestion" (Egger et al., 2012). In this article, proteins identified in the different sections of pig skim milk powder (SMP) digestion are presented. In addition to the exemplary ß-casein profiles of the paper, the peptide patterns of the other most abundant milk proteins during in vivo digestion in individual pigs are shown as heatmaps and line graphs. These data clearly reveal the digestion resistant protein regions and illustrate the variability between the pigs in the different sampling sections. Moreover, peptide patterns of the same SMP proteins comparing the harmonized in vitro digestion (IVD) with pig in vivo digestion show the physiological relevance of the IVD protocol. Finally, correlation coefficients were calculated to indicate similarities between pig sampling sections and gastric and intestinal IVD endpoints.

3.
Food Res Int ; 102: 567-574, 2017 12.
Article in English | MEDLINE | ID: mdl-29195987

ABSTRACT

Recently, a static in vitro digestion (IVD) protocol was published by Minekus and coworkers (Minekus et al., 2014) within the COST INFOGEST network. The protocol, concentrating on physiological enzyme activities had the main goal to improve the comparability of experimental data between labs. The protocol was validated in several inter-laboratory studies using skim milk powder (SMP) and indeed demonstrated improved harmonization compared with previous experiments with individual IVD protocols (Egger et al., 2016). Although the enzyme activities and salt concentrations of the harmonized protocol are based on available human in vivo data, confirmation of the protocol's physiological relevance has been lacking until now. The main goal of the study was therefore to compare the harmonized IVD protocol with data from in vivo digestion. Towards this aim, an in vivo pig experiment with the same SMP as used for the validation of the IVD protocol was performed followed by a comparison of protein hydrolysis between in vivo and in vitro results. Protein hydrolysis at different levels was analyzed with gel electrophoresis, mass spectrometry, high performance liquid chromatography, and spectrophotometric o-phthaldialdehyde determination of free amino acids. Principle component analysis was used for graphical data comparison. Milk proteins detected after gastric IVD corresponded to gastric and duodenal in vivo samples and intestinal IVD samples corresponded to distal jejunal in vivo samples. Peptides identified after the gastric phase of IVD, correlated with in vivo gastric samples (r=0.8) and intestinal IVD peptides correlated best with in vivo samples collected from the median jejunum (r=0.57). Free amino acids were in both systems mainly released during the intestinal phase of digestion. Protein hydrolysis in the harmonized IVD was similar to in vivo protein hydrolysis in pigs at the gastric and intestinal endpoints. Therefore, the harmonized static in vitro protocol is suited to study protein hydrolysis at these endpoints.


Subject(s)
Digestion/physiology , Milk Proteins/metabolism , Swine/metabolism , Animals , Duodenum/metabolism , Food, Preserved , Gastric Mucosa/metabolism , Humans , Hydrolysis , In Vitro Techniques , Intestinal Mucosa/metabolism , Jejunum/metabolism , Milk/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...