Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(9)2023 May 03.
Article in English | MEDLINE | ID: mdl-37175904

ABSTRACT

Genome mining using standard bioinformatics tools has allowed for the uncovering of hidden biosynthesis gene clusters for specialized metabolites in Streptomyces genomes. In this work, we have used an alternative approach consisting in seeking "Streptomyces Antibiotic Regulatory Proteins" (SARP) encoding genes and analyzing their surrounding DNA region to unearth cryptic gene clusters that cannot be identified using standard bioinformatics tools. This strategy has allowed the unveiling of the new ahb cluster in Streptomyces argillaceus, which had not been retrieved before using antiSMASH. The ahb cluster is highly preserved in other Streptomyces strains, which suggests a role for their encoding compounds in specific environmental conditions. By combining overexpression of three regulatory genes and generation of different mutants, we were able to activate the ahb cluster, and to identify and chemically characterize the encoded compounds that we have named ahbamycins (AHBs). These constitute a new family of metabolites derived from 3-amino-4-hydroxybenzoate (3,4-AHBA) known for having antibiotic and antitumor activity. Additionally, by overexpressing three genes of the cluster (ahbH, ahbI, and ahbL2) for the synthesis and activation of 3,4-AHBA, a new hybrid compound, AHB18, was identified which had been produced from a metabolic crosstalk between the AHB and the argimycin P pathways. The identification of this new BGC opens the possibility to generate new compounds by combinatorial biosynthesis.


Subject(s)
Anti-Bacterial Agents , Streptomyces , Anti-Bacterial Agents/chemistry , Transcription Factors/metabolism , Multigene Family , Genes, Regulator , Streptomyces/genetics , Streptomyces/metabolism , Hydroxybenzoates/metabolism
2.
Microb Biotechnol ; 15(12): 2905-2916, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36346129

ABSTRACT

Coelimycin P1 and argimycins P are two types of polyketide alkaloids produced by Streptomyces coelicolor and Streptomyces argillaceus, respectively. Their biosynthesis pathways share some early steps that render very similar aminated polyketide chains, diverging the pathways afterwards. By expressing the putative isomerase cpkE and/or the putative epoxidase/dehydrogenase cpkD from the coelimycin P1 gene cluster into S. argillaceus wild type and in argimycin mutant strains, five novel hybrid argimycins were generated. Chemical characterization of those compounds revealed that four of them show unprecedented scaffolds (quinolizidine and pyranopyridine) never found before in the argimycin family of compounds. One of these compounds (argimycin DM104) shows improved antibiotic activity. Noticeable, biosynthesis of these quinolizidine argimycins results from a hybrid pathway created by combining enzymes from two different pathways, which utilizes an aminated polyketide chain as precursor instead of lysine as it occurs for other quinolizidines.


Subject(s)
Plicamycin , Streptomyces , Plicamycin/chemistry , Plicamycin/metabolism , Multigene Family , Anti-Bacterial Agents/metabolism
3.
ACS Chem Biol ; 15(6): 1541-1553, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32310633

ABSTRACT

Largimycins are hybrid nonribosomal peptide-polyketides that constitute a new group of metabolites in the leinamycin family of natural products displaying unique structural features such as containing an oxazole instead of a thiazole ring or being oxime ester macrocycles, unprecedented in nature, rather than macrolactams. Their discovery in Streptomyces argillaceus and Streptomyces canus has relied on the activation of two homologous silent gene clusters by overexpressing a transcriptional activator and cultivating in specific media. The proposed biosynthesis of largimycins includes the key action of the oxidoreductase LrgO, responsible for the formation of the oxime group involved in macrocyclization, and two putative cryptic biosynthetic steps consisting of chlorination of l-Thr by the NRPS loading module and incorporation of an olefinic exomethylene group by LrgJ PKS. The discovery of largimycins uncovers novel biosynthetic avenues employed in nature to enrich the structural diversity of leinamycins and provides tools for combinatorial biosynthesis.


Subject(s)
Drug Discovery , Lactams/metabolism , Macrolides/metabolism , Streptomyces/metabolism , Thiazoles/metabolism , Thiones/metabolism , Biosynthetic Pathways , Genes, Bacterial , Lactams/chemistry , Macrolides/chemistry , Molecular Structure , Multigene Family , Streptomyces/genetics , Thiazoles/chemistry , Thiones/chemistry
4.
Mar Drugs ; 17(2)2019 02 12.
Article in English | MEDLINE | ID: mdl-30759848

ABSTRACT

The isolation and structural elucidation of a structurally new desertomycin, designated as desertomycin G (1), with strong antibiotic activity against several clinically relevant antibiotic resistant pathogens are described herein. This new natural product was obtained from cultures of the marine actinomycete Streptomyces althioticus MSM3, isolated from samples of the intertidal seaweed Ulva sp. collected in the Cantabrian Sea (Northeast Atlantic Ocean). Particularly interesting is its strong antibiotic activity against Mycobacterium tuberculosis clinical isolates, resistant to antibiotics in clinical use. To the best of our knowledge, this is the first report on a member of the desertomycin family displaying such activity. Additionally, desertomycin G shows strong antibiotic activities against other relevant Gram-positive clinical pathogens such as Corynebacterium urealyticum, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecium, Enterococcus faecalis, and Clostridium perfringens. Desertomycin G also displays moderate antibiotic activity against relevant Gram-negative clinical pathogens such as Bacteroides fragilis, Haemophilus influenzae and Neisseria meningitidis. In addition, the compound affects viability of tumor cell lines, such as human breast adenocarcinoma (MCF-7) and colon carcinoma (DLD-1), but not normal mammary fibroblasts.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Antitubercular Agents/pharmacology , Macrolides/pharmacology , Microalgae/microbiology , Mycobacterium tuberculosis/drug effects , Streptomyces/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Microalgae/classification , Microbial Sensitivity Tests
5.
Mar Drugs ; 16(8)2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30065171

ABSTRACT

Jomthonic acids (JAs) are a group of natural products (NPs) with adipogenic activity. Structurally, JAs are formed by a modified ß-methylphenylalanine residue, whose biosynthesis involves a methyltransferase that in Streptomyces hygroscopicus has been identified as MppJ. Up to date, three JA members (A⁻C) and a few other natural products containing ß-methylphenylalanine have been discovered from soil-derived microorganisms. Herein, we report the identification of a gene (jomM) coding for a putative methyltransferase highly identical to MppJ in the chromosome of the marine actinobacteria Streptomyces caniferus GUA-06-05-006A. In its 5' region, jomM clusters with two polyketide synthases (PKS) (jomP1, jomP2), a nonribosomal peptide synthetase (NRPS) (jomN) and a thioesterase gene (jomT), possibly conforming a single transcriptional unit. Insertion of a strong constitutive promoter upstream of jomP1 led to the detection of JA A, along with at least two novel JA family members (D and E). Independent inactivation of jomP1, jomN and jomM abolished production of JA A, JA D and JA E, indicating the involvement of these genes in JA biosynthesis. Heterologous expression of the JA biosynthesis cluster in Streptomyces coelicolor M1152 and in Streptomyces albus J1074 led to the production of JA A, B, C and F. We propose a pathway for JAs biosynthesis based on the findings here described.


Subject(s)
Amino Acids/biosynthesis , Streptomyces/metabolism , Amino Acids/chemistry , Biological Products , Computational Biology , Gene Expression Regulation, Bacterial , Molecular Structure , Multigene Family , Phenylalanine/analogs & derivatives
6.
Front Microbiol ; 9: 773, 2018.
Article in English | MEDLINE | ID: mdl-29740412

ABSTRACT

A cultivation-dependent approach revealed that highly diverse populations of Streptomyces were present in atmospheric precipitations from a hailstorm event sampled in February 2016 in the Cantabrian Sea coast, North of Spain. A total of 29 bioactive Streptomyces strains isolated from small samples of hailstone and rainwater, collected from this hailstorm event, were studied here. Taxonomic identification by 16S rRNA sequencing revealed more than 20 different Streptomyces species, with their closest homologs displaying mainly oceanic but also terrestrial origins. Backward trajectory analysis revealed that the air-mass sources of the hailstorm event, with North Western winds, were originated in the Arctic Ocean (West Greenland and North Iceland) and Canada (Labrador), depending on the altitude. After traveling across the North Atlantic Ocean during 4 days the air mass reached Europe and precipitated as hailstone and rain water at the sampling place in Spain. The finding of Streptomyces species able to survive and disperse through the atmosphere increases our knowledge of the biogeography of genus Streptomyces on Earth, and reinforces our previous dispersion model, suggesting a generalized feature for the genus which could have been essential in his evolution. This unique atmospheric-derived Streptomyces collection was screened for production of bioactive secondary metabolites. Analyses of isolates ethyl acetate extracts by LC-UV-MS and further database comparison revealed an extraordinary diversity of bioactive natural products. One hundred molecules were identified, mostly displaying contrasted antibiotic and antitumor/cytotoxic activities, but also antiparasitic, antiviral, anti-inflammatory, neuroprotector, and insecticide properties. More interestingly, 38 molecules not identified in natural products databases might represent new natural products. Our results revealed for the first time an extraordinary diversity of Streptomyces species in the atmosphere able to produce an extraordinary repertoire of bioactive molecules, thus providing a very promising source for the discovery of novel pharmaceutical natural products.

7.
PLoS One ; 13(5): e0198145, 2018.
Article in English | MEDLINE | ID: mdl-29795673

ABSTRACT

Sequencing of Streptomyces genomes has revealed they harbor a high number of biosynthesis gene cluster (BGC), which uncovered their enormous potentiality to encode specialized metabolites. However, these metabolites are not usually produced under standard laboratory conditions. In this manuscript we report the activation of BGCs for antimycins, carotenoids, germicidins and desferrioxamine compounds in Streptomyces argillaceus, and the identification of the encoded compounds. This was achieved by following different strategies, including changing the growth conditions, heterologous expression of the cluster and inactivating the adpAa or overexpressing the abrC3 global regulatory genes. In addition, three new carotenoid compounds have been identified.


Subject(s)
Antimycin A/analogs & derivatives , Carotenoids/metabolism , Deferoxamine/metabolism , Multigene Family , Phenols/metabolism , Pyrones/metabolism , Streptomyces/genetics , Streptomyces/metabolism , Antimycin A/metabolism , Gene Expression Regulation, Bacterial , Streptomyces/growth & development
8.
Front Microbiol ; 9: 252, 2018.
Article in English | MEDLINE | ID: mdl-29503641

ABSTRACT

Argimycins P are a recently identified family of polyketide alkaloids encoded by the cryptic gene cluster arp of Streptomyces argillaceus. These compounds contain either a piperideine ring, or a piperidine ring which may be fused to a five membered ring, and a polyene side chain, which is bound in some cases to an N-acetylcysteine moiety. The arp cluster consists of 11 genes coding for structural proteins, two for regulatory proteins and one for a hypothetical protein. Herein, we have characterized the post-piperideine ring biosynthesis steps of argimycins P through the generation of mutants in arp genes, the identification and characterization of compounds accumulated by those mutants, and cross-feeding experiments between mutants. Based in these results, a biosynthesis pathway is proposed assigning roles to every arp gene product. The regulation of the arp cluster is also addressed by inactivating/overexpressing the positive SARP-like arpRI and the negative TetR-like arpRII transcriptional regulators and determining the effect on argimycins P production, and through gene expression analyses (reverse transcription PCR and quantitative real-time PCR) of arp genes in regulatory mutants in comparison to the wild type strain. These findings will contribute to deepen the knowledge on the biosynthesis of piperidine-containing polyketides and provide tools that can be used to generate new analogs by genetic engineering and/or biocatalysis.

9.
Front Microbiol ; 9: 39, 2018.
Article in English | MEDLINE | ID: mdl-29441046

ABSTRACT

Many bioactive natural products are glycosylated compounds in which the sugar components usually participate in interaction and molecular recognition of the cellular target. Therefore, the presence of sugar moieties is important, in some cases essential, for bioactivity. Searching for novel glycosylated bioactive compounds is an important aim in the field of the research for natural products from actinomycetes. A great majority of these sugar moieties belong to the 6-deoxyhexoses and share two common biosynthetic steps catalyzed by a NDP-D-glucose synthase (GS) and a NDP-D-glucose 4,6-dehydratase (DH). Based on this fact, seventy one Streptomyces strains isolated from the integument of ants of the Tribe Attini were screened for the presence of biosynthetic gene clusters (BGCs) for glycosylated compounds. Total DNAs were analyzed by PCR amplification using oligo primers for GSs and DHs and also for a NDP-D-glucose-2,3-dehydratases. Amplicons were used in gene disruption experiments to generate non-producing mutants in the corresponding clusters. Eleven mutants were obtained and comparative dereplication analyses between the wild type strains and the corresponding mutants allowed in some cases the identification of the compound coded by the corresponding cluster (lobophorins, vicenistatin, chromomycins and benzanthrins) and that of two novel macrolactams (sipanmycin A and B). Several strains did not show UPLC differential peaks between the wild type strain and mutant profiles. However, after genome sequencing of these strains, the activation of the expression of two clusters was achieved by using nutritional and genetic approaches leading to the identification of compounds of the cervimycins family and two novel members of the warkmycins family. Our work defines a useful strategy for the identification new glycosylated compounds by a combination of genome mining, gene inactivation experiments and the activation of silent biosynthetic clusters in Streptomyces strains.

10.
Mar Drugs ; 15(9)2017 Aug 28.
Article in English | MEDLINE | ID: mdl-28846627

ABSTRACT

The present article describes a structurally novel natural product of the paulomycin family, designated as paulomycin G (1), obtained from the marine strain Micromonospora matsumotoense M-412, isolated from Cantabrian Sea sediments collected at 2000 m depth during an oceanographic expedition to the submarine Avilés Canyon. Paulomycin G is structurally unique since-to our knowledge-it is the first member of the paulomycin family of antibiotics lacking the paulomycose moiety. It is also the smallest bioactive paulomycin reported. Its structure was determined using HRMS and 1D and 2D NMR spectroscopy. This novel natural product displays strong cytotoxic activities against different human tumour cell lines, such as pancreatic adenocarcinoma (MiaPaca_2), breast adenocarcinoma (MCF-7), and hepatocellular carcinoma (HepG2). The compound did not show any significant bioactivity when tested against a panel of bacterial and fungal pathogens.


Subject(s)
Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Cyclohexenes/isolation & purification , Cyclohexenes/pharmacology , Geologic Sediments/chemistry , Micromonospora/chemistry , Anti-Bacterial Agents/metabolism , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/drug therapy , Cell Line, Tumor , Cyclohexenes/chemistry , Disaccharides/chemistry , Disaccharides/isolation & purification , Disaccharides/pharmacology , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , MCF-7 Cells , Marine Biology , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Oceans and Seas , Phylogeny , Streptomyces/metabolism
11.
Mar Drugs ; 15(5)2017 May 19.
Article in English | MEDLINE | ID: mdl-28534807

ABSTRACT

The present article describes the isolation of a new natural product of the lobophorin family, designated as lobophorin K (1), from cultures of the marine actinobacteria Streptomyces sp. M-207, previously isolated from the cold-water coral Lophelia pertusa collected at 1800 m depth during an expedition to the submarine Avilés Canyon. Its structure was determined using a combination of spectroscopic techniques, mainly ESI-TOF MS and 1D and 2D NMR. This new natural product displayed cytotoxic activity against two human tumor cell lines, such as pancreatic carcinoma (MiaPaca-2) and breast adenocarcinoma (MCF-7). Lobophorin K also displayed moderate and selective antibiotic activity against pathogenic Gram-positive bacteria such as Staphylococcus aureus.


Subject(s)
Anthozoa/microbiology , Antineoplastic Agents/pharmacology , Macrolides/chemistry , Macrolides/pharmacology , Streptomyces/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Humans , Macrolides/metabolism , Microbial Sensitivity Tests , Molecular Structure , Phylogeny , Streptomyces/genetics
12.
Microb Biotechnol ; 10(4): 873-885, 2017 07.
Article in English | MEDLINE | ID: mdl-28417606

ABSTRACT

Streptomyces sp. NTK937, producer of benzoxazole antibiotic caboxamycin, produces in addition a methyl ester derivative, O-methylcaboxamycin. Caboxamycin cluster, comprising one regulatory and nine structural genes, has been delimited, and each gene has been individually inactivated to demonstrate its role in the biosynthetic process. The O-methyltransferase potentially responsible for O-methylcaboxamycin synthesis would reside outside this cluster. Five of the genes, cbxR, cbxA, cbxB, cbxD and cbxE, encoding a SARP transcriptional regulator, salicylate synthase, 3-oxoacyl-ACP-synthase, ACP and amidohydrolase, respectively, have been found to be essential for caboxamycin biosynthesis. The remaining five structural genes were found to have paralogues distributed throughout the genome, capable of partaking in the process when their cluster homologue is inactivated. Two of such paralogues, cbxC' and cbxI', coding an AMP-dependent synthetase-ligase and an anthranilate synthase, respectively, have been identified. However, the other three genes might simultaneously have more than one paralogue, given that cbxF (DAHP synthase), cbxG (2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase) and cbxH (isochorismatase) have three, three and five putative paralogue genes, respectively, of similar function within the genome. As a result of genetic manipulation, a novel benzoxazole (3'-hydroxycaboxamycin) has been identified in the salicylate synthase-deficient mutant strain ΔcbxA. 3'-hydroxycaboxamycin derives from the cross-talk between the caboxamycin and enterobactin pathways.


Subject(s)
Anti-Bacterial Agents/metabolism , Benzoxazoles/metabolism , Biosynthetic Pathways/genetics , Streptomyces/genetics , Streptomyces/metabolism , Genes, Bacterial , Metabolic Engineering , Multigene Family
13.
J Nat Prod ; 80(2): 569-573, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28169531

ABSTRACT

Two new antibiotics, branimycins B (2) and C (3), were produced by fermentation of the abyssal actinobacterium Pseudonocardia carboxydivorans M-227, isolated from deep seawater of the Avilés submarine Canyon. Their structures were elucidated by HRMS and NMR analyses. These compounds exhibit antibacterial activities against a panel of Gram-positive bacteria, including Corynebacterium urealyticum, Clostridium perfringens, and Micrococcus luteus, and against the Gram-negative bacterium Neisseria meningitidis. Additionally, branimycin B displayed moderate antibacterial activity against other Gram-negative bacteria such as Bacteroides fragilis, Haemophilus influenzae, and Escherichia coli, and branimycin C against the Gram-positive Enterococcus faecalis and methicillin-sensitive and methicillin-resistant Staphylococcus aureus.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Macrolides/isolation & purification , Macrolides/pharmacology , Anti-Bacterial Agents/chemistry , Enterococcus faecalis , Gram-Negative Bacteria , Gram-Positive Bacteria , Haemophilus influenzae , Macrolides/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular
14.
Front Microbiol ; 8: 194, 2017.
Article in English | MEDLINE | ID: mdl-28239372

ABSTRACT

Genome mining of the mithramycin producer Streptomyces argillaceus ATCC 12956 revealed 31 gene clusters for the biosynthesis of secondary metabolites, and allowed to predict the encoded products for 11 of these clusters. Cluster 18 (renamed cluster arp) corresponded to a type I polyketide gene cluster related to the previously described coelimycin P1 and streptazone gene clusters. The arp cluster consists of fourteen genes, including genes coding for putative regulatory proteins (a SARP-like transcriptional activator and a TetR-like transcriptional repressor), genes coding for structural proteins (three PKSs, one aminotransferase, two dehydrogenases, two cyclases, one imine reductase, a type II thioesterase, and a flavin reductase), and one gene coding for a hypothetical protein. Identification of encoded compounds by this cluster was achieved by combining several strategies: (i) inactivation of the type I PKS gene arpPIII; (ii) inactivation of the putative TetR-transcriptional repressor arpRII; (iii) cultivation of strains in different production media; and (iv) using engineered strains with higher intracellular concentration of malonyl-CoA. This has allowed identifying six new alkaloid compounds named argimycins P, which were purified and structurally characterized by mass spectrometry and nuclear magnetic resonance spectroscopy. Some argimycins P showed a piperidine ring with a polyene side chain (argimycin PIX); others contain also a fused five-membered ring (argimycins PIV-PVI). Argimycins PI-PII showed a pyridine ring instead, and an additional N-acetylcysteinyl moiety. These compounds seem to play a negative role in growth and colony differentiation in S. argillaceus, and some of them show weak antibiotic activity. A pathway for the biosynthesis of argimycins P is proposed, based on the analysis of proposed enzyme functions and on the structure of compounds encoded by the arp cluster.

15.
Microb Ecol ; 73(2): 338-352, 2017 02.
Article in English | MEDLINE | ID: mdl-27614749

ABSTRACT

Marine Actinobacteria are emerging as an unexplored source for natural product discovery. Eighty-seven deep-sea coral reef invertebrates were collected during an oceanographic expedition at the submarine Avilés Canyon (Asturias, Spain) in a range of 1500 to 4700 m depth. From these, 18 cultivable bioactive Actinobacteria were isolated, mainly from corals, phylum Cnidaria, and some specimens of phyla Echinodermata, Porifera, Annelida, Arthropoda, Mollusca and Sipuncula. As determined by 16S rRNA sequencing and phylogenetic analyses, all isolates belong to the phylum Actinobacteria, mainly to the Streptomyces genus and also to Micromonospora, Pseudonocardia and Myceligenerans. Production of bioactive compounds of pharmacological interest was investigated by high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GC-MS) techniques and subsequent database comparison. Results reveal that deep-sea isolated Actinobacteria display a wide repertoire of secondary metabolite production with a high chemical diversity. Most identified products (both diffusible and volatiles) are known by their contrasted antibiotic or antitumor activities. Bioassays with ethyl acetate extracts from isolates displayed strong antibiotic activities against a panel of important resistant clinical pathogens, including Gram-positive and Gram-negative bacteria, as well as fungi, all of them isolated at two main hospitals (HUCA and Cabueñes) from the same geographical region. The identity of the active extracts components of these producing Actinobacteria is currently being investigated, given its potential for the discovery of pharmaceuticals and other products of biotechnological interest.


Subject(s)
Actinobacteria/chemistry , Actinobacteria/classification , Actinobacteria/isolation & purification , Anthozoa/microbiology , Biological Products/pharmacology , Phylogeny , Actinobacteria/genetics , Animals , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Base Sequence , Biodiversity , Biological Products/chemistry , Biological Products/isolation & purification , Bioprospecting , Cell Line, Tumor/drug effects , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Classification , Coral Reefs , DNA, Bacterial , Ecosystem , Gas Chromatography-Mass Spectrometry , Genes, Bacterial , Invertebrates/microbiology , Marine Biology , Plant Extracts , RNA, Ribosomal, 16S/genetics , Seawater , Secondary Metabolism , Spain , Streptomyces/classification , Streptomyces/isolation & purification
16.
Microb Cell Fact ; 15(1): 187, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27829451

ABSTRACT

BACKGROUND: Antitumor compounds PM100117 and PM100118 are glycosylated polyketides derived from the marine actinobacteria Streptomyces caniferus GUA-06-05-006A. The organization and characterization of the PM100117/18 biosynthesis gene cluster has been recently reported. RESULTS: Based on the preceding information and new genetic engineering data, we have outlined the pathway by which PM100117/18 are glycosylated. Furthermore, these genetic engineering experiments have allowed the generation of novel PM100117/18 analogues. Deletion of putative glycosyltranferase genes and additional genes presumably involved in late biosynthesis steps of the three 2,6-dideoxysugars appended to the PM100117/18 polyketide skeleton, resulted in the generation of a series of intermediates and novel derivatives. CONCLUSIONS: Isolation and identification of the novel compounds constitutes an important contribution to our knowledge on PM100117/18 glycosylation, and set the basis for further characterization of specific enzymatic reactions, additional genetic engineering and combinatorial biosynthesis approaches.


Subject(s)
Antineoplastic Agents/metabolism , Genetic Engineering/methods , Macrolides/metabolism , A549 Cells , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Gene Deletion , Glycosylation , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , HT29 Cells , Humans , Macrolides/pharmacology , Streptomyces/genetics , Streptomyces/metabolism
17.
Microb Cell Fact ; 15: 56, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-27001601

ABSTRACT

BACKGROUND: Streptomyces albus J1074 produces glycosylated antibiotics paulomycin A, B and E that derive from chorismate and contain an isothiocyanate residue in form of paulic acid. Paulomycins biosynthesis pathway involves two glycosyltransferases, three acyltransferases, enzymes required for paulic acid biosynthesis (in particular an aminotransferase and a sulfotransferase), and enzymes involved in the biosynthesis of two deoxysugar moieties: D-allose and L-paulomycose. RESULTS: Inactivation of genes encoding enzymes involved in deoxysugar biosynthesis, paulic acid biosynthesis, deoxysugar transfer, and acyl moieties transfer has allowed the identification of several biosynthetic intermediates and shunt products, derived from paulomycin intermediates, and to propose a refined version of the paulomycin biosynthesis pathway. Furthermore, several novel bioactive derivatives of paulomycins carrying modifications in the L-paulomycose moiety have been generated by combinatorial biosynthesis using different plasmids that direct the biosynthesis of alternative deoxyhexoses. CONCLUSIONS: The paulomycins biosynthesis pathway has been defined by inactivation of genes encoding glycosyltransferases, acyltransferases and enzymes involved in paulic acid and L-paulomycose biosynthesis. These experiments have allowed the assignment of each of these genes to specific paulomycin biosynthesis steps based on characterization of products accumulated by the corresponding mutant strains. In addition, novel derivatives of paulomycin A and B containing L-paulomycose modified moieties were generated by combinatorial biosynthesis. The production of such derivatives shows that L-paulomycosyl glycosyltransferase Plm12 possesses a certain degree of flexibility for the transfer of different deoxysugars. In addition, the pyruvate dehydrogenase system form by Plm8 and Plm9 is also flexible to catalyze the attachment of a two-carbon side chain, derived from pyruvate, into both 2,6-dideoxyhexoses and 2,3,6-trideoxyhexoses. The activity of the novel paulomycin derivatives carrying modifications in the L-paulomycose moiety is lower than the original compounds pointing to some interesting structure-activity relationships.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Carbohydrate Metabolism/genetics , Metabolic Engineering/methods , Streptomyces/genetics , Streptomyces/metabolism , Biosynthetic Pathways/genetics , Cyclohexenes , Deoxy Sugars/metabolism , Disaccharides/biosynthesis , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Multigene Family , Organisms, Genetically Modified , Streptomyces/enzymology
18.
Microb Cell Fact ; 15: 44, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26905289

ABSTRACT

BACKGROUND: PM100117 and PM100118 are glycosylated polyketides with remarkable antitumor activity, which derive from the marine symbiotic actinobacteria Streptomyces caniferus GUA-06-05-006A. Structurally, PM100117 and PM100118 are composed of a macrocyclic lactone, three deoxysugar units and a naphthoquinone (NQ) chromophore that shows a clear structural similarity to menaquinone. RESULTS: Whole-genome sequencing of S. caniferus GUA-06-05-006A has enabled the identification of PM100117 and PM100118 biosynthesis gene cluster, which has been characterized on the basis of bioinformatics and genetic engineering data. The product of four genes shows high identity to proteins involved in the biosynthesis of menaquinone via futalosine. Deletion of one of these genes led to a decay in PM100117 and PM100118 production, and to the accumulation of several derivatives lacking NQ. Likewise, five additional genes have been genetically characterized to be involved in the biosynthesis of this moiety. Moreover, the generation of a mutant in a gene coding for a putative cytochrome P450 has led to the production of PM100117 and PM100118 structural analogues showing an enhanced in vitro cytotoxic activity relative to the parental products. CONCLUSIONS: Although a number of compounds structurally related to PM100117 and PM100118 has been discovered, this is, to our knowledge, the first insight reported into their biosynthesis. The structural resemblance of the NQ moiety to menaquinone, and the presence in the cluster of four putative menaquinone biosynthetic genes, suggests a connection between the biosynthesis pathways of both compounds. The availability of the PM100117 and PM100118 biosynthetic gene cluster will surely pave a way to the combinatorial engineering of more derivatives.


Subject(s)
Actinobacteria/genetics , Antineoplastic Agents/pharmacology , Biosynthetic Pathways/genetics , Genetic Engineering/methods , Macrolides/pharmacology , Multigene Family/genetics , Seawater/microbiology , Actinobacteria/drug effects , Antineoplastic Agents/chemistry , Biological Transport/drug effects , Biosynthetic Pathways/drug effects , Carbohydrates/biosynthesis , Carbohydrates/chemistry , Computational Biology , Computer Simulation , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Genome, Bacterial , Macrolides/chemistry , Naphthoquinones/chemistry , Naphthoquinones/metabolism , Sequence Analysis, DNA
20.
Microb Ecol ; 71(2): 375-86, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26224165

ABSTRACT

Members of the Streptomyces albidoflavus clade, identified by 16S rRNA sequencing and phylogenetic analyses, are widespread among predominant terrestrial lichens (Flavoparmelia caperata and Xanthoria parietina) and diverse intertidal and subtidal marine macroalgae, brown red and green (Phylum Heterokontophyta, Rhodophyta, and Chlorophyta) from the Cantabrian Cornice. In addition to these terrestrial and coastal temperate habitats, similar strains were also found to colonize deep-sea ecosystems and were isolated mainly from gorgonian and solitary corals and other invertebrates (Phylum Cnidaria, Annelida, Echinodermata, Arthropoda, and Porifera) living up to 4700-m depth and at a temperature of 2-4 °C in the submarine Avilés Canyon. Similar strains have been also repeatedly isolated from atmospheric precipitations (rain drops, snow, and hailstone) collected in the same area throughout a year observation time. These ubiquitous strains were found to be halotolerant, psychrotolerant, and barotolerant. Bioactive compounds with diverse antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. These include antibacterials (paulomycins A and B), antifungals (maltophilins), antifungals displaying also cytotoxic activities (antimycins and 6-epialteramides), and the antitumor compound fredericamycin. A hypothetical dispersion model is here proposed to explain the biogeographical distribution of S. albidoflavus strains in terrestrial, marine, and atmospheric environments.


Subject(s)
Invertebrates/microbiology , Seawater/microbiology , Streptomyces/isolation & purification , Animals , Biological Factors/chemistry , Biological Factors/metabolism , Invertebrates/classification , Lichens/microbiology , Streptomyces/chemistry , Streptomyces/genetics , Streptomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...