Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell ; 11: 143-154, 2024.
Article in English | MEDLINE | ID: mdl-38756204

ABSTRACT

The AMPK/SNF1 pathway governs energy balance in eukaryotic cells, notably influencing glucose de-repression. In S. cerevisiae, Snf1 is phosphorylated and hence activated upon glucose depletion. This activation is required but is not sufficient for mediating glucose de-repression, indicating further glucose-dependent regulation mechanisms. Employing fluorescence recovery after photobleaching (FRAP) in conjunction with non-linear mixed effects modelling, we explore the spatial dynamics of Snf1 as well as the relationship between Snf1 phosphorylation and its target Mig1 controlled by hexose sugars. Our results suggest that inactivation of Snf1 modulates Mig1 localization and that the kinetic of Snf1 localization to the nucleus is modulated by the presence of non-fermentable carbon sources. Our data offer insight into the true complexity of regulation of this central signaling pathway in orchestrating cellular responses to fluctuating environmental cues. These insights not only expand our understanding of glucose homeostasis but also pave the way for further studies evaluating the importance of Snf1 localization in relation to its phosphorylation state and regulation of downstream targets.

2.
Microorganisms ; 10(3)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35336166

ABSTRACT

Lithium salts are used in the treatment of mood disorders, cancer, and Alzheimer's disease. It has been shown to prolong life span in several phyla; however, not yet in budding yeast. In our study, we investigate the influence of lithium on yeast cells' viability by characterizing protein aggregate formation, cell volume, and molecular crowding in the context of stress adaptation. While our data suggest a concentration-dependent growth inhibition caused by LiCl, we show an extended long-term survival rate as an effect of lithium addition upon glucose deprivation. We show that caloric restriction mitigates the negative impact of LiCl on cellular survival. Therefore, we suggest that lithium could affect glucose metabolism upon caloric restriction, which could explain the extended long-term survival observed in our study. We find furthermore that lithium chloride did not affect an immediate salt-induced Hsp104-dependent aggregate formation but cellular adaptation to H2O2 and acute glucose starvation. We presume that different salt types and concentrations interfere with effective Hsp104 recruitment or its ATP-dependent disaggregase activity as a response to salt stress. This work provides novel details of Li+ effect on live eukaryotic cells which may also be applicable in further research on the treatment of cancer, Alzheimer's, or other age-related diseases in humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...