Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1729: 465013, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38824753

ABSTRACT

The application of Process Analytical Technology (PAT) principles for manufacturing of biotherapeutics proffers the prospect of ensuring consistent product quality along with increased productivity as well as substantial cost and time savings. Although this paradigm shift from a traditional, rather rigid manufacturing model to a more scientific, risk-based approach has been advocated by health authorities for almost two decades, the practical implementation of PAT in the biopharmaceutical industry is still limited by the lack of fit-for-purpose analytical methods. In this regard, most of the proposed spectroscopic techniques are sufficiently fast but exhibit deficiencies in terms of selectivity and sensitivity, while well-established offline methods, such as (ultra-)high-performance liquid chromatography, are generally considered as too slow for this task. To address these reservations, we introduce here a novel online Liquid Chromatography (LC) setup that was specifically designed to enable real-time monitoring of critical product quality attributes during time-sensitive purification operations in downstream processing. Using this online LC solution in combination with fast, purpose-built analytical methods, sampling cycle times between 1.30 and 2.35 min were achieved, without compromising on the ability to resolve and quantify the product variants of interest. The capabilities of our approach are ultimately assessed in three case studies, involving various biotherapeutic modalities, downstream processes and analytical chromatographic separation modes. Altogether, our results highlight the expansive opportunities of online LC based applications to serve as a PAT tool for biopharmaceutical manufacturing.


Subject(s)
Biological Products , Biological Products/analysis , Biological Products/chemistry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry
2.
Microbiology (Reading) ; 156(Pt 8): 2537-2548, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20413555

ABSTRACT

Natural rubber [poly-(cis-1,4-isoprene)] is cleaved to 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (ODTD) by rubber oxygenase A (RoxA) isolated from Xanthomonas sp. RoxA has two c-type haem centres that show two distinct alpha-bands at 549 and 553 nm in the dithionite-reduced state. A well-resolved midpoint potential (E(0)') of -65 mV was determined for one haem by spectrophotometric titrations in the absence of dioxygen with dithionite and ferricyanide as reductant and oxidant, respectively. The midpoint potential of the second haem was not resolvable (E(0)' about -130 to -160 mV). One of the two haems was reduced by NADH (549 nm alpha-band), similar to bacterial dihaem peroxidases. Evidence for an electron transfer between the two haems was provided by slow reduction of the second haem (553 nm alpha-band) upon incubation of the partially reduced enzyme at room temperature. Addition of imidazole or related compounds to RoxA led to UV/vis spectral features similar to those observed for partially reduced RoxA. Notably, reduction of RoxA with dithionite or NADH, or binding of compounds such as imidazole, resulted in a reversible inactivation of the enzyme, unlike dihaem peroxidases. In line with this result, RoxA did not show any peroxidase activity. EPR spectra of RoxA as isolated showed two low-spin Fe(III) haem centres, with apparent g-values of 3.39, 3.09, 2.23, 1.92 and 1.50. A weak signal in the g=6 region resulting from a high-spin Fe(III) haem was also observed with a preparation-dependent intensity that disappeared in the presence of imidazole. Attempts to provide spectroscopic evidence for binding of the natural substrate (polyisoprene latex) to RoxA failed. However, experimental data are presented that RoxA is able to subtract redox equivalents from its substrate or from model compounds. In conclusion, RoxA is a novel type of dihaem dioxygenase with features clearly different from classical cytochrome c peroxidases.


Subject(s)
Dioxygenases/chemistry , Rubber/metabolism , Xanthomonas/enzymology , Heme/metabolism , NAD/metabolism , Oxidation-Reduction , Spectrum Analysis
3.
Article in English | MEDLINE | ID: mdl-18259065

ABSTRACT

Rubber oxygenase A (RoxA) from Xanthomonas sp. strain 35Y is an extracellular dioxygenase that is capable of cleaving the double bonds of poly(cis-1,4-isoprene) into short-chain isoprene units with 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD) as the major cleavage product. Crystals of the dihaem c-type cytochrome RoxA were grown by sitting-drop vapour diffusion using polyethylene glycol as a precipitant. RoxA crystallized in space group P2(1), with unit-cell parameters a = 72.4, b = 97.1, c = 101.1 A, beta = 98.39 degrees, resulting in two monomers per asymmetric unit. Diffraction data were collected to a limiting resolution of 1.8 A. Despite a protein weight of 74.1 kDa and only two iron sites per monomer, phasing was successfully carried out by multiple-wavelength anomalous dispersion.


Subject(s)
Oxygenases/chemistry , Xanthomonas/enzymology , Crystallization , Crystallography, X-Ray , Protein Conformation
4.
Appl Environ Microbiol ; 71(5): 2473-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15870336

ABSTRACT

Oxidative cleavage of poly(cis-1,4-isoprene) by rubber oxygenase RoxA purified from Xanthomonas sp. was investigated in the presence of different combinations of (16)O(2), (18)O(2), H(2)(16)O, and H(2)(18)O. 12-oxo-4,8-dimethyl-trideca-4,8-diene-1-al (ODTD; m/z 236) was the main cleavage product in the absence of (18)O-compounds. Incorporation of one (18)O atom in ODTD was found if the cleavage reaction was performed in the presence of (18)O(2) and H(2)(16)O. Incubation of poly(cis-1,4-isoprene) (with RoxA) or of isolated unlabeled ODTD (without RoxA) with H(2)(18)O in the presence of (16)O(2) indicated that the carbonyl oxygen atoms of ODTD significantly exchanged with oxygen atoms derived from water. The isotope exchange was avoided by simultaneous enzymatic reduction of both carbonyl functions of ODTD to the corresponding dialcohol (12-hydroxy-4,8-dimethyl-trideca-4,8-diene-1-ol (HDTD; m/z 240) during RoxA-mediated in vitro cleavage of poly(cis-1,4-isoprene). In the presence of (18)O(2), H(2)(16)O, and alcohol dehydrogenase/NADH, incorporation of two atoms of (18)O into the reduced metabolite HDTD was found (m/z 244), revealing that RoxA cleaves rubber by a dioxygenase mechanism. Based on the labeling results and the presence of two hemes in RoxA, a model of the enzymatic cleavage mechanism of poly(cis-1,4-isoprene) is proposed.


Subject(s)
Dioxygenases/physiology , Heme/physiology , Polyethylenes/metabolism , Rubber/metabolism , Xanthomonas/enzymology , Hemiterpenes , Latex , Oxygen Isotopes/pharmacology
5.
Article in English | MEDLINE | ID: mdl-16511073

ABSTRACT

Polyhydroxyalkanoates (PHA) are biodegradable polyesters that have attracted commercial and academic interest as environmentally friendly materials. A number of enzymes are able to degrade polyhydroxyalkanoates to water-soluble products. PhaZ7 poly(3-hydroxybutyrate) (PHB) depolymerase (EC 3.1.1.75), a 342-amino-acid hydrolase from the PHA-degrading bacterium Paucimonas lemoignei, has been found to possess substrate specificity for amorphous PHA. PhaZ7 was crystallized by the microdialysis method. Thin rod-like crystals were grown in low ionic strength solution and found to belong to the monoclinic space group C2, with unit-cell parameters a = 225.8, b = 46.5, c = 171.3, beta = 128.9 degrees. A complete data set was collected to 2.75 A resolution at 100 K using synchrotron radiation.


Subject(s)
Bacterial Proteins/chemistry , Carboxylic Ester Hydrolases/chemistry , Gram-Negative Bacteria/enzymology , Bacterial Proteins/metabolism , Biodegradation, Environmental , Biopolymers/chemistry , Carboxylic Ester Hydrolases/metabolism , Crystallization , Crystallography, X-Ray , Gram-Negative Bacteria/metabolism , Temperature
6.
Appl Environ Microbiol ; 70(12): 7388-95, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15574940

ABSTRACT

An extracellular protein with strong absorption at 406 nm was purified from cell-free culture fluid of latex-grown Xanthomonas sp. strain 35Y. This protein was identical to the gene product of a recently characterized gene cloned from Xanthomonas sp., as revealed by determination of m/z values and sequencing of selected isolated peptides obtained after trypsin fingerprint analysis. The purified protein degraded both natural rubber latex and chemosynthetic poly(cis-1,4-isoprene) in vitro by oxidative cleavage of the double bonds of poly(cis-1,4-isoprene). 12-oxo-4,8-dimethyltrideca-4,8-diene-1-al (m/z 236) was identified and unequivocally characterized as the major cleavage product, and there was a homologous series of minor metabolites that differed from the major degradation product only in the number of repetitive isoprene units between terminal functions, CHO-CH2--and--H2-COCH3. An in vitro enzyme assay for oxidative rubber degradation was developed based on high-performance liquid chromatography analysis and spectroscopic detection of product carbonyl functions after derivatization with dinitrophenylhydrazone. Enzymatic cleavage of rubber by the purified protein was strictly dependent on the presence of oxygen; it did not require addition of any soluble cofactors or metal ions and was optimal around pH 7.0 at 40 degrees C. Carbon monoxide and cyanide inhibited the reaction; addition of catalase had no effect, and peroxidase activity could not be detected. The purified protein was specific for natural rubber latex and chemosynthetic poly(cis-1,4-isoprene). Analysis of the amino acid sequence deduced from the cloned gene (roxA [rubber oxygenase]) revealed the presence of two heme-binding motifs (CXXCH) for covalent attachment of heme to the protein. Spectroscopic analysis confirmed the presence of heme, and approximately 2 mol of heme per mol of RoxA was found.


Subject(s)
Butadienes/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Hemiterpenes/metabolism , Pentanes/metabolism , Rubber/metabolism , Xanthomonas/enzymology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Heme Oxygenase (Decyclizing)/chemistry , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase (Decyclizing)/isolation & purification , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Oxidation-Reduction , Xanthomonas/genetics , Xanthomonas/growth & development
7.
FEMS Microbiol Lett ; 224(1): 107-12, 2003 Jul 15.
Article in English | MEDLINE | ID: mdl-12855176

ABSTRACT

The recently discovered extracellular poly[(R)-3-hydroxybutyrate] (PHB) depolymerase PhaZ7 of Paucimonas lemoignei represents the first member of a new subgroup (EC 3.1.1.75) of serine hydrolases with no significant amino acid similarities to conventional PHB depolymerases, lipases or other hydrolases except for a potential lipase box-like motif (Ala-His-Ser136-Met-Gly) and potential candidates for catalytic triad and oxyanion pocket amino acids. In order to identify amino acids essential for activity 11 mutants of phaZ7 were generated by site-directed mutagenesis and expressed in recombinant protease-deficient Bacillus subtilis WB800. The wild-type depolymerase and 10 of the 11 mutant proteins (except for Ser136Cys) were expressed and efficiently secreted by B. subtilis as shown by Western blots of cell-free culture fluid proteins. No PHB depolymerase activity was detected in strains harbouring one of the following substitutions: His47Ala, Ser136Ala, Asp242Ala, Asp242Asn, His306Ala, indicating the importance of these amino acids for activity. Replacement of Ser136 by Thr resulted in a decrease of activity to about 20% of the wild-type level and suggested that the hydroxy group of the serine side chain is important for activity but can be partially replaced by the hydroxy function of threonine. Alterations of Asp256 to Ala or Asn or of the putative serine hydrolase pentapeptide motif (Ala-His-Ser136-Met-Gly) to a lipase box consensus sequence (Gly134-His-Ser136-Met-Gly) or to the PHB depolymerase box consensus sequence (Gly134-Leu135-Ser136-Met-Gly) had no significant effect on PHB depolymerase activity, indicating that these amino acids or sequence motifs were not essential for activity. In conclusion, the PHB depolymerase PhaZ7 is a serine hydrolase with a catalytic triad and oxyanion pocket consisting of His47, Ser136, Asp242 and His306.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/genetics , Amino Acid Sequence , Bacillus subtilis/genetics , Catalysis , Escherichia coli/genetics , Esterases/metabolism , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Lipase/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed
8.
FEMS Microbiol Lett ; 209(2): 237-41, 2002 Apr 09.
Article in English | MEDLINE | ID: mdl-12007811

ABSTRACT

Purification of poly(3-hydroxybutyrate) depolymerase (EC 3.1.1.75) from Paucimonas lemoignei is complicated because the bacterium produces several isoenzymes which are difficult to separate from each other. The phaZ5 gene of P. lemoignei encoding extracellular poly(3-hydroxybutyrate) depolymerase A was functionally expressed from the constitutive P43 promoter of pWB980 in a multiple protease-negative mutant of Bacillus subtilis (strain WB800) and secreted to the culture medium. The depolymerase (apparent M(r), 42 kDa; 1.9 mg purified protein per liter culture) was purified from cell-free culture fluid to homogenity by applying only one chromatography step in comparison to at least two necessary steps if poly(3-hydroxybutyrate) depolymerases are purified from P. lemoignei. The recombinant depolymerase lacked any carbohydrate content in contrast to the glycosylated depolymerase of the wild-type. Glycosylation was not essential for activity but enhanced the thermal stability of the enzyme at high temperature. Overexpression of poly(3-hydroxybutyrate) depolymerase in B. subtilis is more efficient than in Escherichia coli.


Subject(s)
Bacillus subtilis/genetics , Carboxylic Ester Hydrolases/genetics , Gram-Negative Bacteria/enzymology , Gram-Negative Bacteria/genetics , Carboxylic Ester Hydrolases/isolation & purification , Carboxylic Ester Hydrolases/metabolism , Cloning, Molecular , DNA, Recombinant , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Hydroxybutyrates/metabolism , Polyesters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...