Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cytotherapy ; 20(9): 1164-1181, 2018 09.
Article in English | MEDLINE | ID: mdl-30122654

ABSTRACT

BACKGROUND: Many efforts have been devoted to improve the performance of dendritic cell (DC)-based cancer vaccines. Ideally, a DC vaccine should induce robust type 1-polarized T-cell responses and efficiently expand antigen (Ag)-specific cytotoxic T-cells, while being applicable regardless of patient human leukocyte antigen (HLA) type. Production time should be short, while maximally being good manufacturing practice (GMP)-compliant. We developed a method that caters to all of these demands and demonstrated the superiority of the resulting product compared with DCs generated using a well-established "classical" protocol. METHODS: Immunomagnetically purified monocytes were cultured in a closed system for 3 days in GMP-compliant serum-free medium and cytokines, and matured for 24 h using monophosphoryl lipid A (MPLA)+ interferon-gamma (IFN-γ). Mature DCs were electroporated with messenger RNA (mRNA) encoding full-length antigen and cryopreserved. "Classical" DCs were cultured for 8 days in flasks, with one round of medium and cytokine supplementation, and matured with tumor necrosis factor alpha (TNF-α) + prostaglandin E2 (PGE2) during the last 2 days. RESULTS: Four-day MPLA/IFN-γ-matured DCs were superior to 8-day TNF-α/PGE2-matured DCs in terms of yield, co-stimulatory/co-inhibitory molecule expression, resilience to electroporation and cryopreservation and type 1-polarizing cytokine and chemokine release after cell thawing. Electroporated and cryopreserved DCs according to our protocol efficiently present epitopes from tumor antigen-encoding mRNA, inducing a strong expansion of antigen-specific CD8+ T-cells with full cytolytic capacity. CONCLUSION: We demonstrate using a GMP-compliant culture protocol the feasibility of generating high yields of mature DCs in a short time, with a superior immunogenic profile compared with 8-day TNF-α/PGE2-matured DCs, and capable of inducing vigorous cytotoxic T-cell responses to antigen from electroporated mRNA. This method is now being applied in our clinical trial program.


Subject(s)
Cancer Vaccines , Cell Culture Techniques/methods , Dendritic Cells/cytology , RNA, Messenger , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Cell Differentiation , Cryopreservation , Dendritic Cells/immunology , Dinoprostone/pharmacology , Electroporation , Epitopes , Humans , Interferon-gamma/pharmacology , Lipid A/analogs & derivatives , Lipid A/pharmacology , Monocytes/cytology , RNA, Messenger/genetics , T-Lymphocytes, Cytotoxic/immunology , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...