Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Exp Med ; 221(1)2024 01 01.
Article in English | MEDLINE | ID: mdl-37902602

ABSTRACT

Intestinal epithelial cells have the capacity to upregulate MHCII molecules in response to certain epithelial-adhesive microbes, such as segmented filamentous bacteria (SFB). However, the mechanism regulating MHCII expression as well as the impact of epithelial MHCII-mediated antigen presentation on T cell responses targeting those microbes remains elusive. Here, we identify the cellular network that regulates MHCII expression on the intestinal epithelium in response to SFB. Since MHCII on the intestinal epithelium is dispensable for SFB-induced Th17 response, we explored other CD4+ T cell-based responses induced by SFB. We found that SFB drive the conversion of cognate CD4+ T cells to granzyme+ CD8α+ intraepithelial lymphocytes. These cells accumulate in small intestinal intraepithelial space in response to SFB. Yet, their accumulation is abrogated by the ablation of MHCII on the intestinal epithelium. Finally, we show that this mechanism is indispensable for the SFB-driven increase in the turnover of epithelial cells in the ileum. This study identifies a previously uncharacterized immune response to SFB, which is dependent on the epithelial MHCII function.


Subject(s)
Antigen Presentation , CD4-Positive T-Lymphocytes , Epithelial Cells , Granzymes , Bacteria
2.
Mucosal Immunol ; 16(4): 373-385, 2023 08.
Article in English | MEDLINE | ID: mdl-36739089

ABSTRACT

Interleukin (IL)-17 protects epithelial barriers by inducing the secretion of antimicrobial peptides. However, the effect of IL-17 on Paneth cells (PCs), the major producers of antimicrobial peptides in the small intestine, is unclear. Here, we show that the targeted ablation of the IL-17 receptor (IL-17R) in PCs disrupts their antimicrobial functions and decreases the frequency of ileal PCs. These changes become more pronounced after colonization with IL-17 inducing segmented filamentous bacteria. Mice with PCs that lack IL-17R show an increased inflammatory transcriptional profile in the ileum along with the severity of experimentally induced ileitis. These changes are associated with a decrease in the diversity of gut microbiota that induces a severe ileum pathology upon transfer to genetically susceptible mice, which can be prevented by the systemic administration of IL-17a/f in microbiota recipients. In an exploratory analysis of a small cohort of pediatric patients with Crohn's disease, we have found that a portion of these patients exhibits a low number of lysozyme-expressing ileal PCs and a high ileitis severity score, resembling the phenotype of mice with IL-17R-deficient PCs. Our study identifies IL-17R-dependent signaling in PCs as an important mechanism that maintains ileal homeostasis through the prevention of dysbiosis.


Subject(s)
Ileitis , Microbiota , Receptors, Interleukin-17 , Animals , Child , Humans , Mice , Antimicrobial Peptides , Dysbiosis/microbiology , Ileitis/microbiology , Ileum/microbiology , Inflammation/pathology , Interleukin-17 , Paneth Cells/pathology , Receptors, Interleukin-17/genetics
3.
Science ; 379(6634): 826-833, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36821686

ABSTRACT

The intestinal microbiota is known to influence postnatal growth. We previously found that a strain of Lactiplantibacillus plantarum (strain LpWJL) buffers the adverse effects of chronic undernutrition on the growth of juvenile germ-free mice. Here, we report that LpWJL sustains the postnatal growth of malnourished conventional animals and supports both insulin-like growth factor-1 (IGF-1) and insulin production and activity. We have identified cell walls isolated from LpWJL, as well as muramyl dipeptide and mifamurtide, as sufficient cues to stimulate animal growth despite undernutrition. Further, we found that NOD2 is necessary in intestinal epithelial cells for LpWJL-mediated IGF-1 production and for postnatal growth promotion in malnourished conventional animals. These findings indicate that, coupled with renutrition, bacteria cell walls or purified NOD2 ligands have the potential to alleviate stunting.


Subject(s)
Gastrointestinal Microbiome , Growth , Intestines , Lactobacillaceae , Malnutrition , Nod2 Signaling Adaptor Protein , Animals , Mice , Cell Wall/chemistry , Epithelial Cells/microbiology , Epithelial Cells/physiology , Gastrointestinal Microbiome/physiology , Germ-Free Life , Growth Disorders/physiopathology , Growth Disorders/therapy , Insulin/metabolism , Insulin-Like Growth Factor I/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/physiology , Intestines/microbiology , Intestines/physiology , Lactobacillaceae/physiology , Malnutrition/physiopathology , Malnutrition/therapy , Nod2 Signaling Adaptor Protein/metabolism , Growth/drug effects , Growth/physiology , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Acetylmuramyl-Alanyl-Isoglutamine/therapeutic use
4.
Elife ; 112022 01 31.
Article in English | MEDLINE | ID: mdl-35099391

ABSTRACT

Medullary thymic epithelial cells (mTECs), which produce and present self-antigens, are essential for the establishment of central tolerance. Since mTEC numbers are limited, their function is complemented by thymic dendritic cells (DCs), which transfer mTEC-produced self-antigens via cooperative antigen transfer (CAT). While CAT is required for effective T cell selection, many aspects remain enigmatic. Given the recently described heterogeneity of mTECs and DCs, it is unclear whether the antigen acquisition from a particular TEC subset is mediated by preferential pairing with a specific subset of DCs. Using several relevant Cre-based mouse models that control for the expression of fluorescent proteins, we have found that, in regards to CAT, each subset of thymic DCs preferentially targets a distinct mTEC subset(s). Importantly, XCR1+-activated DC subset represented the most potent subset in CAT. Interestingly, thymic DCs can also acquire antigens from more than one mTEC, and of these, monocyte-derived dendritic cells (moDCs) were determined to be the most efficient. moDCs also represented the most potent DC subset in the acquisition of antigen from other DCs. These findings suggest a preferential pairing model for the distribution of mTEC-derived antigens among distinct populations of thymic DCs.


Subject(s)
Antigen Presentation/immunology , Autoantigens/metabolism , Immune Tolerance , Thymus Gland/immunology , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Epithelial Cells/immunology , Epithelial Cells/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Thymus Gland/cytology
5.
Eur J Immunol ; 51(9): 2237-2250, 2021 09.
Article in English | MEDLINE | ID: mdl-34107067

ABSTRACT

Early embryonic hematopoiesis in mammals is defined by three successive waves of hematopoietic progenitors which exhibit a distinct hematopoietic potential and provide continuous support for the development of the embryo and adult organism. Although the functional importance of each of these waves has been analyzed, their spatio-temporal overlap and the lack of wave-specific markers hinders the accurate separation and assessment of their functional roles during early embryogenesis. We have recently shown that TLR2, in combination with c-kit, represents the earliest signature of emerging precursors of the second hematopoietic wave, erythro-myeloid precursors (EMPs). Since the onset of Tlr2 expression distinguishes EMPs from primitive progenitors which coexist in the yolk sac from E7.5, we generated a novel transgenic "knock in" mouse model, Tlr2Dtr , suitable for inducible targeted depletion of TLR2+ EMPs. In this model, the red fluorescent protein and diphtheria toxin receptor sequences are linked via a P2A sequence and inserted into the Tlr2 locus before its stop codon. We show that a timely controlled deletion of TLR2+ EMPs in Tlr2Dtr embryos results in a marked decrease in both erythroid as well as myeloid lineages and, consequently, in embryonic lethality peaking before E13.5. These findings validate the importance of EMPs in embryonic development.


Subject(s)
Embryo, Mammalian/pathology , Embryonic Development/genetics , Hematopoiesis/genetics , Myeloid Progenitor Cells/cytology , Toll-Like Receptor 2/genetics , Animals , Embryo, Mammalian/embryology , Erythrocytes/cytology , Hematopoiesis/physiology , Macrophages/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic
6.
Nat Commun ; 11(1): 2361, 2020 05 12.
Article in English | MEDLINE | ID: mdl-32398640

ABSTRACT

The development of thymic regulatory T cells (Treg) is mediated by Aire-regulated self-antigen presentation on medullary thymic epithelial cells (mTECs) and dendritic cells (DCs), but the cooperation between these cells is still poorly understood. Here we show that signaling through Toll-like receptors (TLR) expressed on mTECs regulates the production of specific chemokines and other genes associated with post-Aire mTEC development. Using single-cell RNA-sequencing, we identify a new thymic CD14+Sirpα+ population of monocyte-derived dendritic cells (CD14+moDC) that are enriched in the thymic medulla and effectively acquire mTEC-derived antigens in response to the above chemokines. Consistently, the cellularity of CD14+moDC is diminished in mice with MyD88-deficient TECs, in which the frequency and functionality of thymic CD25+Foxp3+ Tregs are decreased, leading to aggravated mouse experimental colitis. Thus, our findings describe a TLR-dependent function of mTECs for the recruitment of CD14+moDC, the generation of Tregs, and thereby the establishment of central tolerance.


Subject(s)
Colitis/immunology , Dendritic Cells/immunology , Epithelial Cells/immunology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Adoptive Transfer , Animals , Antigen Presentation , Autoantigens/immunology , Cell Separation , Chemokines/immunology , Chemokines/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Flow Cytometry , Lipopolysaccharide Receptors/metabolism , Mice , Receptors, Immunologic/metabolism , Self Tolerance , Sequence Analysis, RNA , Signal Transduction/immunology , Single-Cell Analysis , T-Lymphocytes, Regulatory/transplantation , Thymus Gland/cytology , Toll-Like Receptors/metabolism , Up-Regulation
7.
J Exp Med ; 216(5): 1027-1037, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30918005

ABSTRACT

The autoimmune regulator (Aire) serves an essential function for T cell tolerance by promoting the "promiscuous" expression of tissue antigens in thymic epithelial cells. Aire is also detected in rare cells in peripheral lymphoid organs, but the identity of these cells is poorly understood. Here, we report that Aire protein-expressing cells in lymph nodes exhibit typical group 3 innate lymphoid cell (ILC3) characteristics such as lymphoid morphology, absence of "classical" hematopoietic lineage markers, and dependence on RORγt. Aire+ cells are more frequent among lineage-negative RORγt+ cells of peripheral lymph nodes as compared with mucosa-draining lymph nodes, display a unique Aire-dependent transcriptional signature, express high surface levels of MHCII and costimulatory molecules, and efficiently present an endogenously expressed model antigen to CD4+ T cells. These findings define a novel type of ILC3-like cells with potent APC features, suggesting that these cells serve a function in the control of T cell responses.


Subject(s)
Antigen-Presenting Cells/immunology , Lymph Nodes/cytology , Lymphocytes/immunology , Lymphocytes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , CD11 Antigens/metabolism , Epithelial Cell Adhesion Molecule/metabolism , Gene Expression Regulation , Histocompatibility Antigens Class II/metabolism , Immunity, Innate , Mice , Mice, Inbred BALB C , Mice, Knockout , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Phenotype , Transcription, Genetic , AIRE Protein
8.
Semin Cell Dev Biol ; 88: 138-146, 2019 04.
Article in English | MEDLINE | ID: mdl-29355606

ABSTRACT

The gut is the biggest immune organ in the body that encloses commensal microbiota which aids in food digestion. Paneth cells, positioned at the frontline of host-microbiota interphase, can modulate the composition of microbiota. Paneth cells achieve this via the delivery of microbicidal substances, among which enteric α-defensins play the primary role. If microbiota is dysregulated, it can impact the function of the local mucosal immune system. Importantly, this system is also exposed to an enormous number of antigens which are derived from the gut-resident microbiota and processed food, and may potentially trigger undesirable local inflammatory responses. To understand the intricate regulations and liaisons between Paneth cells, microbiota and the immune system in this intestinal-specific setting, one must consider their mode of interaction in a wider context of regulatory processes which impose immune tolerance not only to self, but also to microbiota and food-derived antigens. These include, but are not limited to, tolerogenic mechanisms of central tolerance in the thymus and peripheral tolerance in the secondary lymphoid organs, and the intestine itself. Defects in these processes can compromise homeostasis in the intestinal mucosal immunity. In this review, which is focused on tolerance to intestinal antigens and its relevance for the pathogenesis of gut immune diseases, we provide an outline of such multilayered immune control mechanisms and highlight functional links that underpin their cooperative nature.


Subject(s)
Dysbiosis/prevention & control , Gastrointestinal Tract/immunology , Paneth Cells/immunology , Peripheral Tolerance , alpha-Defensins/immunology , Animals , Central Tolerance , Dysbiosis/immunology , Dysbiosis/microbiology , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Gene Expression/immunology , Homeostasis/immunology , Humans , Immunity, Mucosal/drug effects , Inflammation , Paneth Cells/drug effects , Paneth Cells/microbiology , Symbiosis/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/microbiology , alpha-Defensins/biosynthesis , alpha-Defensins/pharmacology
9.
Eur J Immunol ; 48(3): 546-548, 2018 03.
Article in English | MEDLINE | ID: mdl-29193031

ABSTRACT

Medullary thymic epithelial cell (mTEC)-restricted expression of autoimmune regulator (Aire) is essential for establishment of immune tolerance. Recently, Aire was also shown to be expressed in cells of hematopietic and reproductive lineages. Thus, the generation of Airefl/fl mouse strain enables the investigation of the cell-specific function of Aire.


Subject(s)
Immune Tolerance/genetics , Polyendocrinopathies, Autoimmune/genetics , Polyendocrinopathies, Autoimmune/immunology , Transcription Factors/genetics , Transcription Factors/immunology , Animals , Antigen-Presenting Cells/pathology , Cell Lineage/genetics , Cell Lineage/immunology , Female , Humans , Male , Mice , Mice, Knockout , Mice, Transgenic , Polyendocrinopathies, Autoimmune/pathology , Reproduction/genetics , Reproduction/immunology , AIRE Protein
10.
Neuro Endocrinol Lett ; 33 Suppl 3: 120-3, 2012.
Article in English | MEDLINE | ID: mdl-23353854

ABSTRACT

OBJECTIVES: Cyanobacteria are studied from the viewpoint of the issue of risks to water supply, agriculture and recreational activities for a long time. Cyanobacteria produce a wide range of substances which can be toxic and can influence the safety and quality of fish products. The aim of this study was to determine whether the diet with the content of cyanobacteria can affect the water activity and the dry matter of fish muscle and whether this diet can contribute significantly to the shelf life of fish muscles. METHODS: Common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) were used in this study. Both fish species were divided into two groups. The first group of fish was fed with feed with cyanobacteria (3% of dry matter), the second group with feed without cyanobacteria. The water activity and the dry matter were monitored immediately after sampling of the fish muscle on day 7, 14 and 21 (carp) or on day 10, 20 and 30 (rainbow trout) and seven days after every sampling and cold storage (6-8 °C). RESULTS: Feed with the content of cyanobacteria significantly decreased the water activity in muscles of both fish species on day 21 (in carp) and on day 30 (in rainbow trout). The dry matter of fish muscle significantly increased on day 7 and 21 (in carp) and on day 10 and 30, but decreased on day 20 (in rainbow trout). The cold storage significantly influenced the dry matter only. While the dry matter was increased in the common carp (7 days of cold storage after sampling on days 14 and 21), the dry matter decreased in the rainbow trout (7 days of cold storage after sampling on day 10). CONCLUSIONS: The decrease of water activity was found only after longer exposure in the both exposed fish species. The dry matter was influenced far greater and was mostly increased in the both exposed fish species.


Subject(s)
Animal Feed , Aquaculture/methods , Carps/growth & development , Cyanobacteria , Muscle, Skeletal/growth & development , Oncorhynchus mykiss/growth & development , Animals , Bacterial Toxins/toxicity , Carps/physiology , Cryopreservation , Cyanobacteria Toxins , Ecosystem , Marine Toxins/toxicity , Microcystins/toxicity , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Oncorhynchus mykiss/physiology , Organ Size , Swimming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...