Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 11(8)2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34440545

ABSTRACT

Antiphospholipid syndrome (APS) is an autoimmune disease characterized by autoreactive B and T cells against ß2-glycoprotein I (B2GPI), with vascular thrombosis or obstetrical complications. Dendritic cells (DCs) are crucial in the generation of autoimmunity. Here, we conducted a comprehensive systematic review on the relationship between DC and APS. We performed a literature search of PubMed as of 26 March 2021. A total of 33 articles were extracted. DCs are pivotal in inducing inflammatory responses and orchestrating adaptive immunity. DCs contribute to the local inflammation regarding vascular thrombosis or obstetrical complications. Both B2GPI and antiphospholipid antibodies (aPL) can promote antigen presentation by DCs and the generation or maintenance of autoimmunity. In addition, plasmacytoid DC activation is enhanced by aPL, thereby augmenting the inflammatory response. In line with these findings, DC modulation appears promising as a future treatment for APS. In conclusion, our review indicated the crucial role of DCs in the pathogenesis of APS. Deeper understanding of the complex relationship would help in developing new treatment strategies.

2.
Life (Basel) ; 11(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202301

ABSTRACT

Psoriasis is an immune-mediated inflammatory disease that affects 2% to 3% of the world population. Alantolactone, a sesquiterpene lactone, was isolated from Inula helenium and Radix inulae and has several biological effects, including antifungal, anthelmintic, antimicrobial, anti-inflammatory, antitrypanosomal, and anticancer properties. This study aimed to evaluate the antipsoriatic potential of alantolactone in vitro and in vivo and to explore its underlying mechanisms. These results showed that alantolactone significantly attenuated IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α (M5) cytokine-induced hyperproliferation in HaCaT keratinocytes. Moreover, M5 cytokines significantly upregulated the mRNA levels of TNF-α, IL-6, IL-1ß, and IL-8. However, alantolactone attenuated the upregulation of these inflammatory cytokines. In addition, alantolactone was found to inhibit STAT3 phosphorylation and NF-κB p65 nuclear translocation in HaCaT keratinocytes. Furthermore, alantolactone treatment in mice significantly alleviated the severity of skin lesions (erythema, scaling and epidermal thickness, and inflammatory cell infiltration) and decreased the mRNA expression of inflammatory cytokines (e.g., TNF-α, IL-6, IL-1ß, IL-8, IL-17A, and IL-23) in an IMQ-induced-like mouse model. Therefore, our new findings revealed that alantolactone alleviates psoriatic skin lesions by inhibiting inflammation, making it an attractive candidate for future development as an antipsoriatic agent.

3.
Viruses ; 13(5)2021 05 12.
Article in English | MEDLINE | ID: mdl-34065980

ABSTRACT

Venezuelan equine encephalitis virus (VEEV) is an alphavirus that causes encephalitis. Previous work indicated that VEEV infection induced early growth response 1 (EGR1) expression, leading to cell death via the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) arm of the unfolded protein response (UPR) pathway. Loss of PERK prevented EGR1 induction and decreased VEEV-induced death. The results presented within show that loss of PERK in human primary astrocytes dramatically reduced VEEV and eastern equine encephalitis virus (EEEV) infectious titers by 4-5 log10. Loss of PERK also suppressed VEEV replication in primary human pericytes and human umbilical vein endothelial cells, but it had no impact on VEEV replication in transformed U87MG and 293T cells. A significant reduction in VEEV RNA levels was observed as early as 3 h post-infection, but viral entry assays indicated that the loss of PERK minimally impacted VEEV entry. In contrast, the loss of PERK resulted in a dramatic reduction in viral nonstructural protein translation and negative-strand viral RNA production. The loss of PERK also reduced the production of Rift Valley fever virus and Zika virus infectious titers. These data indicate that PERK is an essential factor for the translation of alphavirus nonstructural proteins and impacts multiple RNA viruses, making it an exciting target for antiviral development.


Subject(s)
Alphavirus/genetics , Protein Biosynthesis , Viral Nonstructural Proteins/genetics , eIF-2 Kinase/genetics , Alphavirus/classification , Alphavirus/physiology , Astrocytes/metabolism , Astrocytes/virology , Cell Death , Cells, Cultured , Encephalitis Virus, Venezuelan Equine/physiology , Endothelial Cells/metabolism , Endothelial Cells/virology , HEK293 Cells , Humans , Pericytes/metabolism , Pericytes/virology , RNA, Viral/metabolism , Unfolded Protein Response , Viral Nonstructural Proteins/metabolism , eIF-2 Kinase/metabolism
4.
Plants (Basel) ; 10(2)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673026

ABSTRACT

The host proteins Protein Kinase B (AKT) and glycogen synthase kinase-3 (GSK-3) are associated with multiple neurodegenerative disorders. They are also important for the replication of Venezuelan equine encephalitis virus (VEEV), thereby making the AKT/GSK-3 pathway an attractive target for developing anti-VEEV therapeutics. Resveratrol, a natural phytochemical, has been shown to substantially inhibit the AKT pathway. Therefore, we attempted to explore whether it exerts any antiviral activity against VEEV. In this study, we utilized green fluorescent protein (GFP)- and luciferase-encoding recombinant VEEV to determine the cytotoxicity and antiviral efficacy via luciferase reporter assays, flow cytometry, and immunofluorescent assays. Our results indicate that resveratrol treatment is capable of inhibiting VEEV replication, resulting in increased viability of Vero and U87MG cells as well as reduced virion production and viral RNA contents within host cells for at least 48 h with a single treatment. Furthermore, the suppression of apoptotic signaling adaptors, caspase-3, caspase-7, and annexin V may also be implicated in resveratrol-mediated antiviral activity. We found that decreased phosphorylation of the AKT/GSK-3 pathway, mediated by resveratrol, can be triggered during the early stages of VEEV infection, suggesting that resveratrol disrupts the viral replication cycle and consequently promotes cell survival. Finally, molecular docking and dynamics simulation studies revealed that resveratrol can directly bind to VEEV glycoproteins, which may interfere with virus attachment and entry. In conclusion, our results suggest that resveratrol exerts inhibitory activity against VEEV infection and upon further modification could be a useful compound to study in neuroprotective research and veterinary sciences.

5.
Plants (Basel) ; 9(11)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182776

ABSTRACT

Crotonoside, a guanosine analog originally isolated from Croton tiglium, is reported to be a potent tyrosine kinase inhibitor with immunosuppressive effects on immune cells. Due to its potential immunotherapeutic effects, we aimed to evaluate the anti-arthritic activity of crotonoside and explore its immunomodulatory properties in alleviating the severity of arthritic symptoms. To this end, we implemented the treatment of crotonoside on collagen-induced arthritic (CIA) DBA/1 mice and investigated its underlying mechanisms towards pathogenic dendritic cells (DCs). Our results suggest that crotonoside treatment remarkably improved clinical arthritic symptoms in this CIA mouse model as indicated by decreased pro-inflammatory cytokine production in the serum and suppressed expression of co-stimulatory molecules, CD40, CD80, and MHC class II, on CD11c+ DCs from the CIA mouse spleens. Additionally, crotonoside treatment significantly reduced the infiltration of CD11c+ DCs into the synovial tissues. Our in vitro study further demonstrated that bone marrow-derived DCs (BMDCs) exhibited lower yield in numbers and expressed lower levels of CD40, CD80, and MHC-II when incubated with crotonoside. Furthermore, LPS-stimulated mature DCs exhibited limited capability to prime antigen-specific CD4+ and T-cell proliferation, cytokine secretions, and co-stimulatory molecule expressions when treated with crotonoside. Our pioneer study highlights the immunotherapeutic role of crotonoside in the alleviation of the CIA via modulation of pathogenic DCs, thus creating possible applications of crotonoside as an immunosuppressive agent that could be utilized and further explored in treating autoimmune disorders in the future.

6.
Int J Antimicrob Agents ; 54(1): 80-84, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30930299

ABSTRACT

Zika virus (ZIKV) is a re-emerging Flavivirus that has been linked to microcephaly and other neurological pathologies. In this study, phloretin, a glucose transporter inhibitor naturally derived from plants, was used to investigate the glucose dependence of ZIKV replication in host cells. The results showed that phloretin significantly decreased infectious titres of two ZIKV strains, namely MR766 (African genotype) and PRVABC59 (Puerto Rico genotype). The 50% effective concentration (EC50) of phloretin against MR766 and PRVABC59 was 22.85 µM and 9.31 µM, respectively. Further analyses demonstrated that decreased viral production was due to host-targeted inhibition, including decreased apoptotic caspase-3 and -7 activities and reduced phosphorylation of Akt/mTOR pathways. In addition, upon disruption of cellular glucose availability within host cells using 2-deoxy-d-glucose, ZIKV propagation was inhibited. Collectively, we demonstrate phloretin inhibition of ZIKV propagation and provide evidence of glucose utilization pathways as being important for ZIKV propagation. The activity of phloretin and its role in inhibiting glucose uptake could provide a useful foundation for the development of ZIKV antivirals.


Subject(s)
Antiviral Agents/pharmacology , Carbohydrate Metabolism/drug effects , Enzyme Inhibitors/pharmacology , Phloretin/pharmacology , Virus Replication/drug effects , Zika Virus/drug effects , Animals , Chlorocebus aethiops , Vero Cells , Viral Load , Zika Virus/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...