Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
J Anim Breed Genet ; 137(5): 449-467, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31777136

ABSTRACT

The aim of this study was to perform a Bayesian genomewide association study (GWAS) to identify genomic regions associated with growth traits in Hereford and Braford cattle, and to select Tag-SNPs to represent these regions in low-density panels useful for genomic predictions. In addition, we propose candidate genes through functional enrichment analysis associated with growth traits using Medical Subject Headings (MeSH). Phenotypic data from 126,290 animals and genotypes for 131 sires and 3,545 animals were used. The Tag-SNPs were selected with BayesB (π = 0.995) method to compose low-density panels. The number of Tag-single nucleotide polymorphism (SNP) ranged between 79 and 103 SNP for the growth traits at weaning and between 78 and 100 SNP for the yearling growth traits. The average proportion of variance explained by Tag-SNP with BayesA was 0.29, 0.23, 0.32 and 0.19 for birthweight (BW), weaning weight (WW205), yearling weight (YW550) and postweaning gain (PWG345), respectively. For Tag-SNP with BayesA method accuracy values ranged from 0.13 to 0.30 for k-means and from 0.30 to 0.65 for random clustering of animals to compose reference and validation groups. Although genomic prediction accuracies were higher with the full marker panel, predictions with low-density panels retained on average 76% of the accuracy obtained with BayesB with full markers for growth traits. The MeSH analysis was able to translate genomic information providing biological meanings of more specific gene products related to the growth traits. The proposed Tag-SNP panels may be useful for future fine mapping studies and for lower-cost commercial genomic prediction applications.


Subject(s)
Cattle Diseases/genetics , Genome-Wide Association Study/statistics & numerical data , Genome/genetics , Genomics/methods , Animals , Bayes Theorem , Body Weight/genetics , Breeding/methods , Cattle , Cattle Diseases/pathology , Cluster Analysis , Genotype , Phenotype , Polymorphism, Single Nucleotide/genetics , Weaning
2.
Ecol Evol ; 7(22): 9544-9556, 2017 11.
Article in English | MEDLINE | ID: mdl-29187988

ABSTRACT

Samples of 191 animals from 18 different Brazilian locally adapted swine genetic groups were genotyped using Illumina Porcine SNP60 BeadChip in order to identify selection signatures related to the monthly variation of Brazilian environmental variables. Using BayeScan software, 71 SNP markers were identified as FST outliers and 60 genotypes (58 markers) were found by Samßada software in 371 logistic models correlated with 112 environmental variables. Five markers were identified in both methods, with a Kappa value of 0.073 (95% CI: 0.011-0.134). The frequency of these markers indicated a clear north-south country division that reflects Brazilian environmental differences in temperature, solar radiation, and precipitation. Global spatial territory correlation for environmental variables corroborates this finding (average Moran's I = 0.89, range from 0.55 to 0.97). The distribution of alleles over the territory was not strongly correlated with the breed/genetic groups. These results are congruent with previous mtDNA studies and should be used to direct germplasm collection for the National gene bank.

3.
Trop Anim Health Prod ; 49(5): 951-958, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28365820

ABSTRACT

Brazilian pig production spans over a large territory encompassing regions of different climatic and socio-economic realities. Production, physical, socio-economic, and environmental data were used to characterize pig production in the country. Multivariate analysis evaluated indices including number productivity, production levels, and income from pigs, together with the average area of pig farm and socio-economic variables such as municipal human development index, technical guidance received from agricultural cooperatives and industrial companies, number of family farms, and offtake; and finally, environmental variables: latitude, longitude, annual temperature range, solar radiation index, as well as temperature and humidity index. The Southern region has the largest herd, number of pigs sold/sow, and offtake rate (p < 0.05), followed by the Midwest and Southeast. No significant correlations were seen between production rates and productivity with the socio-economic and environmental variables in the regions of Brazil. Production indexes, productivity, and offtake rate discriminated Northeast and Midwest and Northeast and Southeast regions. The Northern region, with a large area, has few and far-between farms that rear pigs for subsistence. The Northeast region has large herds, but low productivity. Number of slaughtered pigs has been variable over the past three decades, with few states responsible for maintaining high production in Brazil. However, the activity can be effective in any region of the country with technology and technical assistance adapted to regional characteristics.


Subject(s)
Animal Husbandry , Sus scrofa/physiology , Animals , Brazil , Environment , Female , Models, Theoretical , Multivariate Analysis , Spatial Analysis
4.
BMC Genet ; 18(1): 2, 2017 01 18.
Article in English | MEDLINE | ID: mdl-28100165

ABSTRACT

BACKGROUND: Genomic selection (GS) has played an important role in cattle breeding programs. However, genotyping prices are still a challenge for implementation of GS in beef cattle and there is still a lack of information about the use of low-density Single Nucleotide Polymorphisms (SNP) chip panels for genomic predictions in breeds such as Brazilian Braford and Hereford. Therefore, this study investigated the effect of using imputed genotypes in the accuracy of genomic predictions for twenty economically important traits in Brazilian Braford and Hereford beef cattle. Various scenarios composed by different percentages of animals with imputed genotypes and different sizes of the training population were compared. De-regressed EBVs (estimated breeding values) were used as pseudo-phenotypes in a Genomic Best Linear Unbiased Prediction (GBLUP) model using two different mimicked panels derived from the 50 K (8 K and 15 K SNP panels), which were subsequently imputed to the 50 K panel. In addition, genomic prediction accuracies generated from a 777 K SNP (imputed from the 50 K SNP) were presented as another alternate scenario. RESULTS: The accuracy of genomic breeding values averaged over the twenty traits ranged from 0.38 to 0.40 across the different scenarios. The average losses in expected genomic estimated breeding values (GEBV) accuracy (accuracy obtained from the inverse of the mixed model equations) relative to the true 50 K genotypes ranged from -0.0007 to -0.0012 and from -0.0002 to -0.0005 when using the 50 K imputed from the 8 K or 15 K, respectively. When using the imputed 777 K panel the average losses in expected GEBV accuracy was -0.0021. The average gain in expected EBVs accuracy by including genomic information when compared to simple BLUP was between 0.02 and 0.03 across scenarios and traits. CONCLUSIONS: The percentage of animals with imputed genotypes in the training population did not significantly influence the validation accuracy. However, the size of the training population played a major role in the accuracies of genomic predictions in this population. The losses in the expected accuracies of GEBV due to imputation of genotypes were lower when using the 50 K SNP chip panel imputed from the 15 K compared to the one imputed from the 8 K SNP chip panel.


Subject(s)
Cattle/genetics , Genomics/methods , Genotype , Animals , Breeding , Machine Learning , Phenotype , Species Specificity
5.
BMC Genet ; 15: 157, 2014 Dec 29.
Article in English | MEDLINE | ID: mdl-25543517

ABSTRACT

BACKGROUND: Strategies for imputing genotypes from the Illumina-Bovine3K, Illumina-BovineLD (6K), BeefLD-GGP (8K), a non-commercial-15K and IndicusLD-GGP (20K) to either Illumina-BovineSNP50 (50K) or to Illumina-BovineHD (777K) SNP panel, as well as for imputing from 50K, GGP-IndicusHD (90iK) and GGP-BeefHD (90tK) to 777K were investigated. Imputation of low density (<50K) genotypes to 777K was carried out in either one or two steps. Imputation of ungenotyped parents (n = 37 sires) with four or more offspring to the 50K panel was also assessed. There were 2,946 Braford, 664 Hereford and 88 Nellore animals, from which 71, 59 and 88 were genotyped with the 777K panel, while all others had 50K genotypes. The reference population was comprised of 2,735 animals and 175 bulls for 50K and 777K, respectively. The low density panels were simulated by masking genotypes in the 50K or 777K panel for animals born in 2011. Analyses were performed using both Beagle and FImpute software. Genotype imputation accuracy was measured by concordance rate and allelic R(2) between true and imputed genotypes. RESULTS: The average concordance rate using FImpute was 0.943 and 0.921 averaged across all simulated low density panels to 50K or to 777K, respectively, in comparison with 0.927 and 0.895 using Beagle. The allelic R(2) was 0.912 and 0.866 for imputation to 50K or to 777K using FImpute, respectively, and 0.890 and 0.826 using Beagle. One and two steps imputation to 777K produced averaged concordance rates of 0.806 and 0.892 and allelic R(2) of 0.674 and 0.819, respectively. Imputation of low density panels to 50K, with the exception of 3K, had overall concordance rates greater than 0.940 and allelic R(2) greater than 0.919. Ungenotyped animals were imputed to 50K panel with an average concordance rate of 0.950 by FImpute. CONCLUSION: FImpute accuracy outperformed Beagle on both imputation to 50K and to 777K. Two-step outperformed one-step imputation for imputing to 777K. Ungenotyped animals that have four or more offspring can have their 50K genotypes accurately inferred using FImpute. All low density panels, except the 3K, can be used to impute to the 50K using FImpute or Beagle with high concordance rate and allelic R(2).


Subject(s)
Cattle/genetics , Polymorphism, Single Nucleotide , Animals , Breeding , Female , Gene Frequency , Genome , Genotype , Male , Models, Genetic , Pedigree , Sequence Analysis, DNA
6.
Rev. mex. anestesiol ; 22(3): 218-21, jul.-sept. 1999. ilus, tab
Article in Spanish | LILACS | ID: lil-276222

ABSTRACT

Se describe la ventilación jet transtraqueal percutánea de alta frecuencia en el tratamiento endoscópico de lesiones laríngeas y subglóticas. Este método es útil para la intubación difícil en pacientes hipóxicos; y gracias a la ventilación jet transtraqueal de alta frecuencia es ahora posible asegurar un campo endoscópico laríngeo libre de tubo orotraqueal. Se discutirán los resultados de la cateterización de 48 pacientes en los cuales se usó éste método. Se describe nuestra experiencia en el Hospital Español de México


Subject(s)
Humans , Anesthesia , Intubation, Intratracheal/instrumentation , Intubation, Intratracheal/methods , Ventilation/instrumentation , Ventilation/methods , Catheterization
SELECTION OF CITATIONS
SEARCH DETAIL
...