Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
SLAS Discov ; 25(9): 1047-1063, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32713278

ABSTRACT

The identification of novel peptide hormones by functional screening is challenging because posttranslational processing is frequently required to generate biologically active hormones from inactive precursors. We developed an approach for functional screening of novel potential hormones by expressing them in endocrine host cells competent for posttranslational processing. Candidate preprohormones were selected by bioinformatics analysis, and stable endocrine host cell lines were engineered to express the preprohormones. The production of mature hormones was demonstrated by including the preprohormones insulin and glucagon, which require the regulated secretory pathway for production of the active forms. As proof of concept, we screened a set of G-protein-coupled receptors (GPCRs) and identified protein FAM237A as a specific activator of GPR83, a GPCR implicated in central nervous system and regulatory T-cell function. We identified the active form of FAM237A as a C-terminally cleaved, amidated 9 kDa secreted protein. The related protein FAM237B, which is 64% homologous to FAM237A, demonstrated similar posttranslational modification and activation of GPR83, albeit with reduced potency. These results demonstrate that our approach is capable of identifying and characterizing novel hormones that require processing for activity.


Subject(s)
Peptide Hormones/isolation & purification , Peptide Library , Protein Transport/genetics , Receptors, G-Protein-Coupled/genetics , Humans , Ligands , Peptide Hormones/genetics , Peptide Hormones/immunology , Protein Binding/genetics , Protein Transport/immunology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/immunology , Signal Transduction/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
2.
Proc Natl Acad Sci U S A ; 111(44): 15741-5, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25331893

ABSTRACT

There are many transmembrane receptor-like proteins whose ligands have not been identified. A strategy for finding ligands when little is known about their tissue source is to screen each extracellular protein individually expressed in an array format by using a sensitive functional readout. Taking this approach, we have screened a large collection (3,191 proteins) of extracellular proteins for their ability to activate signaling of an orphan receptor, leukocyte tyrosine kinase (LTK). Only two related secreted factors, FAM150A and FAM150B (family with sequence similarity 150 member A and member B), stimulated LTK phosphorylation. FAM150A binds LTK extracellular domain with high affinity (K(D) = 28 pM). FAM150A stimulates LTK phosphorylation in a ligand-dependent manner. This strategy provides an efficient approach for identifying functional ligands for other orphan receptors.


Subject(s)
Cytokines/metabolism , Proteome/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction/physiology , Cytokines/genetics , Female , HEK293 Cells , Humans , Male , Phosphorylation/physiology , Protein Binding/physiology , Protein Structure, Tertiary , Proteome/genetics , Proteomics , Receptor Protein-Tyrosine Kinases/genetics
3.
Am J Physiol Endocrinol Metab ; 306(2): E150-6, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24253050

ABSTRACT

A splice form of IGF-1, IGF-1Eb, is upregulated after exercise or injury. Physiological responses have been ascribed to the 24-amino acid COOH-terminal peptide that is cleaved from the NH3-terminal 70-amino acid mature IGF-1 protein. This COOH-terminal peptide was termed "mechano-growth factor" (MGF). Activities claimed for the MGF peptide included enhancing muscle satellite cell proliferation and delaying myoblast fusion. As such, MGF could represent a promising strategy to improve muscle regeneration. Thus, at our two pharmaceutical companies, we attempted to reproduce the claimed effect of MGF peptides on human and mouse muscle myoblast proliferation and differentiation in vitro. Concentrations of peptide up to 500 ng/ml failed to increase the proliferation of C2C12 cells or primary human skeletal muscle myoblasts. In contrast, all cell types exhibited a proliferative response to mature IGF-1 or full-length IGF-1Eb. MGF also failed to inhibit the differentiation of myoblasts into myotubes. To address whether the response to MGF was lost in these tissue culture lines, we measured proliferation and differentiation of primary mouse skeletal muscle stem cells exposed to MGF. This, too, failed to demonstrate a significant effect. Finally, we tested whether MGF could alter a separate documented in vitro effect of the peptide, activation of p-ERK, but not p-Akt, in cardiac myocytes. Although a robust response to IGF-1 was observed, there were no demonstrated activating responses from the native or a stabilized MGF peptide. These results call in to question whether there is a physiological role for MGF.


Subject(s)
Insulin-Like Growth Factor I/metabolism , Myoblasts/drug effects , Stem Cells/drug effects , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Humans , Insulin-Like Growth Factor I/chemistry , Insulin-Like Growth Factor I/pharmacology , Mice , Myoblasts/physiology , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Primary Cell Culture , Protein Processing, Post-Translational , Protein Structure, Tertiary , Stem Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...