Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Immunol ; 158: 75-106, 2023.
Article in English | MEDLINE | ID: mdl-37453754

ABSTRACT

Gasdermins are effectors of pyroptosis downstream of diverse signaling pathways. Emerging evidence suggests that a number of post-translational modifications regulate the function of gasdermins in pyroptosis, a highly inflammatory form of cell death, and lytic or non-lytic secretion of intracellular contents. These include processing by different caspases and other proteases that may activate or suppress pyroptosis, ubiquitination by a bacterial E3 ligase that suppresses pyroptosis as an immune evasion mechanism, modifications at Cys residues in mammalian or microbial gasdermins that promote or inhibit pyroptosis, and potential phosphorylation that represses pyroptosis. Such diverse regulatory mechanisms by host and microbial proteases, ubiquitin ligases, acyltransferases, kinases and phosphatases may underlie the divergent physiological and pathological functions of gasdermins, and furnish opportunities for therapeutic targeting of gasdermins in infectious diseases and inflammatory disorders.


Subject(s)
Cytokines , Pyroptosis , Animals , Humans , Pyroptosis/physiology , Cytokines/metabolism , Gasdermins , Inflammasomes/metabolism , Caspases/metabolism , Mammals/metabolism
2.
Nat Commun ; 13(1): 4621, 2022 08 08.
Article in English | MEDLINE | ID: mdl-35941159

ABSTRACT

Pancreatic ß-cells are prone to endoplasmic reticulum (ER) stress due to their role in insulin secretion. They require sustainable and efficient adaptive stress responses to cope with this stress. Whether episodes of chronic stress directly compromise ß-cell identity is unknown. We show here under reversible, chronic stress conditions ß-cells undergo transcriptional and translational reprogramming associated with impaired expression of regulators of ß-cell function and identity. Upon recovery from stress, ß-cells regain their identity and function, indicating a high degree of adaptive plasticity. Remarkably, while ß-cells show resilience to episodic ER stress, when episodes exceed a threshold, ß-cell identity is gradually lost. Single cell RNA-sequencing analysis of islets from type 1 diabetes patients indicates severe deregulation of the chronic stress-adaptation program and reveals novel biomarkers of diabetes progression. Our results suggest ß-cell adaptive exhaustion contributes to diabetes pathogenesis.


Subject(s)
Cell Plasticity , Insulin-Secreting Cells , Adaptation, Physiological , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Humans , Insulin/metabolism , Insulin-Secreting Cells/metabolism
3.
J Biol Chem ; 292(22): 9191-9203, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28424264

ABSTRACT

Sequential metabolic enzymes in glucose metabolism have long been hypothesized to form multienzyme complexes that regulate glucose flux in living cells. However, it has been challenging to directly observe these complexes and their functional roles in living systems. In this work, we have used wide-field and confocal fluorescence microscopy to investigate the spatial organization of metabolic enzymes participating in glucose metabolism in human cells. We provide compelling evidence that human liver-type phosphofructokinase 1 (PFKL), which catalyzes a bottleneck step of glycolysis, forms various sizes of cytoplasmic clusters in human cancer cells, independent of protein expression levels and of the choice of fluorescent tags. We also report that these PFKL clusters colocalize with other rate-limiting enzymes in both glycolysis and gluconeogenesis, supporting the formation of multienzyme complexes. Subsequent biophysical characterizations with fluorescence recovery after photobleaching and FRET corroborate the formation of multienzyme metabolic complexes in living cells, which appears to be controlled by post-translational acetylation on PFKL. Importantly, quantitative high-content imaging assays indicated that the direction of glucose flux between glycolysis, the pentose phosphate pathway, and serine biosynthesis seems to be spatially regulated by the multienzyme complexes in a cluster-size-dependent manner. Collectively, our results reveal a functionally relevant, multienzyme metabolic complex for glucose metabolism in living human cells.


Subject(s)
Glucose/metabolism , Glycolysis/physiology , Multienzyme Complexes/metabolism , Pentose Phosphate Pathway/physiology , Phosphofructokinase-1, Liver Type/metabolism , Fluorescence Recovery After Photobleaching , Fluorescence Resonance Energy Transfer , Glucose/genetics , HeLa Cells , Humans , Multienzyme Complexes/genetics , Phosphofructokinase-1, Liver Type/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...