Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(5): 053602, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364136

ABSTRACT

The interaction of a resonant light field with a quantum two-level system is of key interest both for fundamental quantum optics and quantum technological applications employing resonant excitation. While emission under resonant continuous-wave excitation has been well studied, the more complex emission spectrum of dynamically dressed states-a quantum two-level system driven by resonant pulsed excitation-has so far been investigated in detail only theoretically. Here, we present the first experimental observation of the complete resonance fluorescence emission spectrum of a single quantum two-level system, in the form of an excitonic transition in a semiconductor quantum dot, driven by finite Gaussian pulses. We observe multiple emerging sidebands as predicted by theory, with an increase of their number and spectral detuning with excitation pulse intensity and a dependence of their spectral shape and intensity on the pulse length. Detuning-dependent measurements provide additional insights into the emission features. The experimental results are in excellent agreement with theoretical calculations of the emission spectra, corroborating our findings.

2.
Nano Lett ; 22(16): 6567-6572, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35792372

ABSTRACT

The quest for the perfect single-photon source includes finding the optimal protocol for exciting the quantum emitter. Coherent optical excitation was, up until now, achieved by tuning the laser pulses to the transition frequency of the emitter, either directly or in average. Recently, it was theoretically discovered that an excitation with two red-detuned pulses is also possible where neither of which would yield a significant upper-level population individually. We show that the so-called swing-up of quantum emitter population (SUPER) scheme can be implemented experimentally with similar properties to existing schemes by precise amplitude shaping of a broadband pulse. Because of its truly off-resonant nature, this scheme has the prospect of powering high-purity photon sources with superior photon count rate.

SELECTION OF CITATIONS
SEARCH DETAIL
...