Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 274(Pt 2): 133301, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914403

ABSTRACT

This work reports about the conjugation of glycine C-terminal ethyl and methyl ester peptides and L-tryptophan methyl ester with sodium hyaluronate in aqueous solutions using the peptide coupling agent DMTMM (or short DMT, 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride). Detailed infrared (IR) absorbance and 1H and 13C (2D) NMR studies (heteronuclear multi-bond correlation spectroscopy, HMBC) confirmed covalent and regioselective amide bonds with the D-glucuronate, but also proves the presence of DMT traces in all conjugates. The ethyl ester`s methyl protons on the peptides` C-terminal could be used to quantify the degree of substitution of the peptide on the hyaluronate scaffold by NMR. The ester group also proved stable during conjugation and work-up, and could in some cases be selectively cleaved in water whilst leaving the amide bond intact as shown by potentiometric charge titration, NMR and IR. The conjugates did not influence the capability of human umbilical vein endothelial cells (HUVECs) to reduce MTS (5-[3-(carboxymethoxy)phenyl]-3-(4,5-dimethyl-2-thiazolyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt) to a formazan dye, which points towards a low cytotoxicity for the obtained products. The conjugation method and products could be tested for tissue engineering gels or drug delivery purposes with alternative, biologically active peptides.

2.
ACS Appl Bio Mater ; 6(12): 5596-5608, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38050684

ABSTRACT

Hybrid collagen (Coll) bioscaffolds have emerged as a promising solution for tissue engineering (TE) and regenerative medicine. These innovative bioscaffolds combine the beneficial properties of Coll, an important structural protein of the extracellular matrix, with various other biomaterials to create platforms for long-term cell growth and tissue formation. The integration or cross-linking of Coll with other biomaterials increases mechanical strength and stability and introduces tailored biochemical and physical factors that mimic the natural tissue microenvironment. This work reports on the fabrication of chemically cross-linked hybrid bioscaffolds with enhanced properties from the combination of Coll, nanofibrillated cellulose (NFC), carboxymethylcellulose (CMC), and citric acid (CA). The bioscaffolds were prepared by 3D printing ink containing Coll-NFC-CMC-CA followed by freeze-drying, dehydrothermal treatment, and neutralization. Cross-linking through the formation of ester bonds between the polymers and CA in the bioscaffolds was achieved by exposing the bioscaffolds to elevated temperatures in the dry state. The morphology, pores/porosity, chemical composition, structure, thermal behavior, swelling, degradation, and mechanical properties of the bioscaffolds in the dry and wet states were investigated as a function of Coll concentration. The bioscaffolds showed no cytotoxicity to MG-63 human bone osteosarcoma cells as tested by different assays measuring different end points. Overall, the presented hybrid Coll bioscaffolds offer a unique combination of biocompatibility, stability, and structural support, making them valuable tools for TE.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Collagen/chemistry , Cellulose/pharmacology , Cellulose/chemistry , Printing, Three-Dimensional
3.
Front Bioeng Biotechnol ; 11: 1241739, 2023.
Article in English | MEDLINE | ID: mdl-37609118

ABSTRACT

Introduction: Biopolymers, such as pullulan, a natural exopolysaccharide from Aureobasidium pullulans, and their nanocomposites are commonly used in the food, pharmaceutical, and medical industries due to their unique physical and chemical properties. Methods: Pullulan was synthesized by the A. pullulans ATCC 201253 strain. Nanocomposite films based on biosynthesized pullulan were prepared and loaded with different concentrations of silver nanoparticles (AgNPs) synthesized by the Fusarium culmorum strain JTW1. AgNPs were characterized by transmission electron microscopy, Zeta potential measurements, and Fourier-transform infrared spectroscopy. In turn, the produced films were subjected to physico-chemical analyses such as goniometry, UV shielding capacity, attenuated total reflection-Fourier-transform infrared spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy, and their mechanical and degradation properties were assessed. The antibacterial assays of the nanoparticles and the nanocomposite films against both food-borne and reference pathogens, including Listeria monocytogenes, Salmonella infantis, Salmonella enterica, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, were performed using standard methods. Results: AgNPs were small (mean 15.1 nm), spherical, and displayed good stability, being coated with protein biomolecules. When used in higher concentrations as an additive to pullulan films, they resulted in reduced hydrophilicity and light transmission for both UV-B and UV-A lights. Moreover, the produced films exhibited a smooth surface. Therefore, it can be concluded that the addition of biogenic AgNPs did not change the morphology and texture of the films compared to the control film. The nanoparticles and nanocomposite films demonstrated remarkable antibacterial activity against both food-borne and reference bacteria. The highest activity of the prepared films was observed against L. monocytogenes. Discussion: The obtained results suggest that the novel nanocomposite films prepared from biosynthesized pullulan and AgNPs can be considered for use in the development of medical products and food packaging. Moreover, this is the first report on pullulan-based nanocomposites with mycogenic AgNPs for such applications.

4.
ACS Appl Bio Mater ; 5(12): 5728-5740, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36469033

ABSTRACT

Biocatalysis is increasingly becoming an alternative method for the synthesis of industrially relevant complex molecules. This can be realized by using enzyme immobilized polysaccharide-based 3D scaffolds as compatible carriers, with defined properties. Especially, immobilization of either single or multiple enzymes on a 3D printed polysaccharide scaffold, exhibiting well-organized interconnected porous structure and morphology, is a versatile approach to access the performance of industrially important enzymes. Here, we demonstrated the use of nanocellulose-based 3D porous scaffolds for the immobilization of glycosyltransferases, responsible for glycosylation in natural biosynthesis. The scaffolds were produced using an ink containing nanofibrillated cellulose (NFC), carboxymethyl cellulose (CMC), and citric acid. Direct-ink-writing 3D printing followed by freeze-drying and dehydrothermal treatment at elevated temperature resulted in chemically cross-linked scaffolds, featuring tunable negative charges (2.2-5.0 mmol/g), pore sizes (10-800 µm), fluid uptake capacity, and exceptional dimensional and mechanical stability in the wet state. The negatively charged scaffolds were applied to immobilize two sugar nucleotide-dependent glycosyltransferases (C-glycosyltransferase, Zbasic2-CGT; sucrose synthase, Zbasic2-SuSy), each harboring a cationic binding module (Zbasic2) to promote charge-based enzyme adsorption. Both enzymes were immobilized at ∼30 mg of protein/g of dry carrier (∼20% yield), independent of the scaffold used. Their specific activities were 0.50 U/mg (Zbasic2-CGT) and 0.19 U/mg (Zbasic2-SuSy), corresponding to an efficacy of 37 and 18%, respectively, compared to the soluble enzymes. The glycosyltransferases were coimmobilized and shown to be active in a cascade reaction to give the natural C-glycoside nothofagin from phloretin (1.0 mM; ∼95% conversion). All enzyme bound scaffolds showed reusability of a maximum of 5 consecutive reactions. These results suggest that the 3D printed and cross-linked NFC/CMC-based scaffolds could present a class of solid carriers for enzyme (co)-immobilization, with promising applications in glycosyltransferase-catalyzed synthesis and other fields of biocatalysis.


Subject(s)
Glycosyltransferases , Tissue Scaffolds , Porosity , Tissue Scaffolds/chemistry , Printing, Three-Dimensional , Cellulose/chemistry
5.
J Funct Biomater ; 13(4)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36278628

ABSTRACT

Quartz crystal microbalance (QCM) is a real-time, nanogram-accurate technique for analyzing various processes on biomaterial surfaces. QCM has proven to be an excellent tool in tissue engineering as it can monitor key parameters in developing cellular scaffolds. This review focuses on the use of QCM in the tissue engineering of cartilage. It begins with a brief discussion of biomaterials and the current state of the art in scaffold development for cartilage tissue engineering, followed by a summary of the potential uses of QCM in cartilage tissue engineering. This includes monitoring interactions with extracellular matrix components, adsorption of proteins onto biomaterials, and biomaterial-cell interactions. In the last part of the review, the material selection problem in tissue engineering is highlighted, emphasizing the importance of surface nanotopography, the role of nanofilms, and utilization of QCM as a "screening" tool to improve the material selection process. A step-by-step process for scaffold design is proposed, as well as the fabrication of thin nanofilms in a layer-by-layer manner using QCM. Finally, future trends of QCM application as a "screening" method for 3D printing of cellular scaffolds are envisioned.

6.
Polymers (Basel) ; 13(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502880

ABSTRACT

Succinylation of proteins is a commonly encountered reaction in biology and introduces negatively charged carboxylates on previously basic primary amine groups of amino acid residues. In analogy, this work investigates the succinylation of primary amines of the synthetic polyelectrolyte polyallylamine (PAA). It investigates the influence of the degree of succinylation on the cytotoxicity and antibacterial activity of the resulting polymers. Succinylation was performed in water with varying amounts of succinic anhydride and at different pH values. The PAA derivatives were analyzed in detail with respect to molecular structure using nuclear magnetic resonance and infrared absorbance spectroscopy. Polyelectrolyte and potentiometric charge titrations were used to elucidate charge ratios between primary amines and carboxylates in the polymers. The obtained materials were then evaluated with respect to their minimum inhibitory concentration against Staphylococcus aureus and Pseudomonas aeruginosa. The biocompatibility was assessed using mouse L929 fibroblasts. The degree of succinylation decreased cytotoxicity but more significantly reduced antibacterial efficacy, demonstrating the sensitivity of the fibroblast cells against this type of ampholytic polyelectrolytes. The obtained polymers were finally electrospun into microfiber webs in combination with neutral water-soluble polyvinyl alcohol. The resulting non-woven could have the potential to be used as wound dressing materials or coatings.

7.
Materials (Basel) ; 14(14)2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34300896

ABSTRACT

The application of hydrogels coupled with 3-dimensional (3D) printing technologies represents a modern concept in scaffold development in cartilage tissue engineering (CTE). Hydrogels based on natural biomaterials are extensively used for this purpose. This is mainly due to their excellent biocompatibility, inherent bioactivity, and special microstructure that supports tissue regeneration. The use of natural biomaterials, especially polysaccharides and proteins, represents an attractive strategy towards scaffold formation as they mimic the structure of extracellular matrix (ECM) and guide cell growth, proliferation, and phenotype preservation. Polysaccharide-based hydrogels, such as alginate, agarose, chitosan, cellulose, hyaluronan, and dextran, are distinctive scaffold materials with advantageous properties, low cytotoxicity, and tunable functionality. These superior properties can be further complemented with various proteins (e.g., collagen, gelatin, fibroin), forming novel base formulations termed "proteo-saccharides" to improve the scaffold's physiological signaling and mechanical strength. This review highlights the significance of 3D bioprinted scaffolds of natural-based hydrogels used in CTE. Further, the printability and bioink formation of the proteo-saccharides-based hydrogels have also been discussed, including the possible clinical translation of such materials.

8.
Carbohydr Polym ; 267: 118226, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119179

ABSTRACT

We report here a one-step aqueous method for the synthesis of isolated and purified polysaccharide-amino acid conjugates. Two different types of amino acid esters: glycine methyl ester and L-tryptophan methyl ester, as model compounds for peptides, were conjugated to the polysaccharide carboxymethylcellulose (CMC) in water using carbodiimide at ambient conditions. Detailed and systematic pH-dependent charge titration and spectroscopy (infrared, nuclear magnetic resonance: 1H, 13C- DEPT 135, 1H- 13C HMBC/HSQC correlation), UV-vis, elemental and ninhydrin analysis provided solid and direct evidence for the successful conjugation of the amino acid esters to the CMC backbone via an amide bond. As the concentration of amino acid esters increased, a conjugation efficiency of 20-80% was achieved. Activated charcoal aided base-catalyzed deprotection of the methyl esters improved the solubility of the conjugates in water. The approach proposed in this work should have the potential to tailor the backbone of polysaccharides containing di- or tri-peptides.


Subject(s)
Carbodiimides/chemistry , Carboxymethylcellulose Sodium/analogs & derivatives , Glycine/analogs & derivatives , Indicators and Reagents/chemistry , Tryptophan/analogs & derivatives , Carboxymethylcellulose Sodium/chemical synthesis , Glycine/chemical synthesis , Molecular Structure , Tryptophan/chemical synthesis
9.
ACS Appl Mater Interfaces ; 13(20): 23352-23368, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33998809

ABSTRACT

Medical implant-associated infections resulting from biofilm formation triggered by unspecific protein adsorption are the prevailing cause of implant failure. However, implant surfaces rendered with multifunctional bioactive nanocoatings offer a promising alternative to prevent the initial attachment of bacteria and effectively interrupt biofilm formation. The need to research and develop novel and stable bioactive nanocoatings for medical implants and a comprehensive understanding of their properties in contact with the complex biological environment are crucial. In this study, we developed an aqueous stable and crosslinker-free polyelectrolyte-surfactant complex (PESC) composed of a renewable cationic polysaccharide, chitosan, a lysine-based anionic surfactant (77KS), and an amphoteric antibiotic, amoxicillin, which is widely used to treat a number of infections caused by bacteria. We successfully introduced the PESC as bioactive functional nanolayers on the "model" and "real" polydimethylsiloxane (PDMS) surfaces under dynamic and ambient conditions. Besides their high stability and improved wettability, these uniformly deposited nanolayers (thickness: 44-61 nm) with mixed charges exhibited strong repulsion toward three model blood proteins (serum albumin, fibrinogen, and γ-globulin) and their competitive interactions in the mixture in real-time, as demonstrated using a quartz crystal microbalance with dissipation (QCM-D). The functional nanolayers with a maximum negative zeta potential (ζ: -19 to -30 mV at pH 7.4), water content (1628-1810 ng cm-2), and hydration (low viscosity and elastic shear modulus) correlated with the mass, conformation, and interaction nature of proteins. In vitro antimicrobial activity testing under dynamic conditions showed that the charged nanolayers actively inhibited the growth of both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to unmodified PDMS. Given the ease of fabrication of multifunctional and charged biobased coatings with simultaneous protein-repellent and antimicrobial activities, the limitations of individual approaches could be overcome leading to a better and advanced design of various medical devices (e.g., catheters, prosthetics, and stents).


Subject(s)
Anti-Bacterial Agents , Biofilms/drug effects , Coated Materials, Biocompatible , Prostheses and Implants/microbiology , Surface-Active Agents , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Escherichia coli/drug effects , Hydrophobic and Hydrophilic Interactions , Lysine/chemistry , Lysine/pharmacology , Nanomedicine , Nanostructures/chemistry , Proteins/chemistry , Silicon , Staphylococcus aureus/drug effects , Surface Properties , Surface-Active Agents/chemistry , Surface-Active Agents/pharmacology
10.
Polymers (Basel) ; 13(6)2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33803742

ABSTRACT

In this study, we report the isolation of cellulose nanocrystals (CNCs) from Isora plant fibers by sulfuric acid hydrolysis and their assembly on hydrophilic cellulose and silicon-di-oxide (SiO2) surfaces via a layer-by-layer (LBL) deposition method. The isolated CNCs were monodispersed and exhibited a length of 200-300 nm and a diameter of 10-20 nm, a negative zetapotential (-34-39 mV) over a wide pH range, and high stability in water at various concentrations. The multi-layered structure, adsorbed mass, conformational changes, and anticoagulant activity of sequentially deposited anionic (sulfated) CNCs and cationic polyethyleneimine (PEI) on the surfaces of cellulose and SiO2 by LBL deposition were investigated using a quartz crystal microbalance technique. The organization and surface features (i.e., morphology, thickness, wettability) of CNCs adsorbed on the surfaces of PEI deposited at different ionic strengths (50-300 mM) of sodium chloride were analysed in detail by profilometry layer-thickness, atomic force microscopy and contact angle measurements. Compared to cellulose (control sample), the total coagulation time and plasma deposition were increased and decreased, respectively, for multilayers of PEI/CNCs. This study should provide new possibilities to fabricate and tailor the physicochemical properties of multilayer films from polysaccharide-based nanocrystals for various biomedical applications.

11.
Nanomaterials (Basel) ; 11(3)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33670845

ABSTRACT

Nowadays, cost-effective, available, and flexible paper-based electronics play an essential role in the electronics industry. Herein, we present gold nanoparticles (AuNPs) as a potential raw material for gold inks in the future for such purposes. AuNPs in this research were synthesised using the ultrasonic spray pyrolysis (USP) technique from two precursors: gold (III) chloride tetrahydrate and gold (III) acetate. Synthesised AuNPs were collected in a suspension composed of deionised (D.I.) water and the stabiliser polyvinylpyrrolidone (PVP). AuNPs' suspensions were subjected to the rotavapor process to obtain gold inks with higher Au concentration (>300 ppm). ICP-MS measurements, the size and shape of AuNPs, ζ-potential, Ultraviolet-visible (UV-Vis) spectrophotometry measurements, and scanning electron microscop y (SEM) of gold inks were carried out in order to find the optimal printing parameters. In the final stage, the optical contact angle measurements were performed using a set of polar to non-polar liquids, allowing for the determination of the surface free energy of gold inks. Inkjet printing of gold inks as defined stripes on photo paper were tested, based on the characterisation results.

12.
Carbohydr Polym ; 254: 117437, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33357910

ABSTRACT

This study describes the formation of cellulose based polyelectrolyte charge complexes on the surface of biodegradable polycaprolactone (PCL) thin films. Anionic sulphated cellulose (CS) and protonated cationic amino cellulose (AC) were used to form these complexes with a layer-by-layer coating technique. Both polyelectrolytes were analyzed by charge titration methods to elucidate their pH-value dependent protonation behavior. A quartz crystal microbalance with dissipation (QCM-D) in combination with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to follow the growth, stability and water content of up to three AC/CS bi-layers in aqueous environment. This was combined with coagulation studies on one, two and three bilayers of AC/CS, measuring the thrombin formation rate and the total coagulation time of citrated blood plasma with QCM-D. Stable mixed charged bilayers could be prepared on PCL and significantly higher masses of AC than of CS were present in these complexes. Strong hydration due to the presence of ammonium and sulphate substituents on the backbone of cellulose led to a significant BSA repellent character of three bilayers of AC/CS coatings. The total plasma coagulation time was increased in comparison to neat PCL, indicating an anticoagulative nature of the coatings. Surprisingly, a coating solely composed of an AC layer significantly prolonged the total coagulation time on the surfaces although it did not prevent fibrinogen deposition. It is suggested that these cellulose derivative-based coatings can therefore be used to prevent unwanted BSA deposition and fibrin clot formation on PCL to foster its biomedical application.


Subject(s)
Anticoagulants/chemistry , Biocompatible Materials/chemistry , Blood Coagulation/drug effects , Cellulose/analogs & derivatives , Polyesters/chemistry , Amination , Anticoagulants/pharmacology , Biocompatible Materials/pharmacology , Cellulose/pharmacology , Humans , Hydrogen-Ion Concentration , Kinetics , Membranes, Artificial , Polyelectrolytes/chemistry , Protein Binding/drug effects , Protons , Serum Albumin, Bovine/chemistry , Static Electricity , Sulfuric Acid Esters/chemistry , Thrombin/antagonists & inhibitors , Thrombin/metabolism , Water/chemistry
13.
Carbohydr Polym ; 251: 117126, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33142658

ABSTRACT

The use of biomass to produce value-adding materials is a core objective of the circular economy, which has attracted great research interest in recent decades. In this context, we present here a simple dispersion-casting process for consolidation of cellulose nanofibrils (CNF), lignosulphonate (LS)-rich bio-waste and CaCl2 in composite membranes. The addition of CaCl2 to CNF and LS dispersions reduces the ζ potential, due to an electrostatic screening, which promotes the aggregation of CNF, increases its moisture content and promotes LS deposition on CNFs already in the dispersion phase. Addition of both the LS and CaCl2 to CNF dispersion has an adverse effect on the mechanical properties of the final membranes. The effectiveness of the new composite membranes has been described in terms of their passive (charring) flame retardancy and 100 % UVA/UVB shielding capacity, both identified for membranes with the highest LS content, as well as high electronic resistance.


Subject(s)
Cellulose/chemistry , Flame Retardants/analysis , Lignin/analogs & derivatives , Nanofibers/chemistry , Radiation-Protective Agents/chemistry , Lignin/chemistry , Ultraviolet Rays
14.
ACS Omega ; 5(45): 29243-29256, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33225155

ABSTRACT

Herein, colloidal dispersions of alkaline nanoparticles (NPs: CaCO3 and Mg(OH)2) are stabilized by trimethylsilyl cellulose (TMSC) in hexamethyldisiloxane and employed to treat historical wood pulp paper by an effortless dip-coating technique. Both alkaline NPs exhibit high stability and no size and shape changes upon stabilization with the polymer, as shown by UV-vis spectroscopy and transmission electron microscopy. The long-term effect of NP/TMSC coatings is investigated in detail using accelerated aging. The results from the pH-test and back-titration of coated papers show a complete acid neutralization (pH ∼ 7.4) and introduction of adequate alkaline reserve even after prolonged accelerated aging. Scanning electron microscopy-energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and infrared and water contact angle measurements showed the introduction of a thin and smooth hydrophobic NP/TMSC coating on the paper fibers. Acid-catalyzed desilylation of TMSC was observed by declining C-Si infrared absorbance peaks upon aging. The CaCO3 coatings are superior to Mg(OH)2 with respect to a reduced yellowing and lower cellulose degradation upon aging as shown by colorimetric measurements and degree of polymerization analysis. The tensile strength and folding endurance of coated and aged papers are improved to 200-300 and 50-70% as illustrated by tensile strength and double folding endurance measurements.

15.
Nanomaterials (Basel) ; 10(4)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235489

ABSTRACT

In order to minimize the pollution caused by the reuse of textile dyes, technologies and materials have been developed that purify waste water in an efficient and cost-effective manner before it is discharged into a water body. In this context, the presented research investigates the potential of two types of fully cellulose-based membranes as adsorbents for cationic dyes used in the textile industry. The first type combines cellulose nanofibrils (CNFs) and carboxymethylated cellulose (CMC) using the solvent casting process and an esterification coupling reaction, while the second type uses commercial bacterial cellulose (BC) in a native and sodium periodate-treated form (BCox). The corresponding membranes were comprehensively evaluated by means of Fourier Transform Infrared (FTIR) Spectroscopy. Results confirm the esterification process within the CNF/CMC membranes, as well as BC oxidation after periodate treatment, as shown by bands at 1726.2 cm-1 and 895 cm-1, respectively. The Potentiometric Titration shows the highest total negative charge of 1.07 mmol/g for 4CNF/4CMC, which is assigned to the presence of COO- within CMC polymers, and lowest (0.21 mmol/g) for BCox. The Contact Angle Goniometry data confirm the hydrophilicity of all membranes, and the angle increased from 0 ° (in pure BC) to 34.5 ° in CMC-rich and to 31.4 ° in BCox membranes due to the presence of CH2COO- and CHO groups, respectively. Confocal Fluorescent Microscopy (CFM) demonstrated the highest µ-roughness in 4CNF/4CMC, while Scanning Electron Microscopy (SEM) depicted diverse morphological features between the membranes, from ultrafine nanofiber networks (in BC and BCox) to larger fiber bundles connected within the polymer phase in CNF/CMC membranes. The adsorption experiment followed by UV-VIS spectroscopy, showed ~100% dye removal efficiency in both CNF/CMC-based membranes, while BC and BCox adsorbed only 24.3% and 23.6%, respectively, when anthraquinone dye was used. Azo dye was only adsorbed with an efficiency of 7-9% on CMC/CNF-based membranes, compared with 5.57% on BC and 7.33% on BCox membranes. The adsorption efficiency at equilibrium was highest for BC (1228 mg/g) and lowest for 7CNF/1CMC (419.24 mg/g) during anthraquinone dye adsorption. In the case of azo dye, the BCox was most effective, with 445.7 mg/g. Applicability of a pseudo second-order model was confirmed for both dyes and all membranes, except for BCox in combination with azo dye, showing the fastest adsorption rate in the case of the 7CNF/1CMC membrane.

16.
Carbohydr Polym ; 236: 116071, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32172885

ABSTRACT

The optimized preparation of novel electrospun nanofibrous composites from cellulose acetate (CA) and ultra-high silica zeolites (UHSZ) are reported as a promising material for the adsorption of Volatile Organic Compound (VOCs). Two types of UHSZs, i.e. silicalite and USY were prepared by hydrothermal crystallization while the fabrication of composites was performed using single needle and needle-less electrospinning systems, demonstrating the scalability of the composite fibres' manufactured. Herein, factors such as properties of spinning solutions and electrospinning process parameters were studied, as well as interactions between the CA and UHSZs. In addition, Quartz Crystal Microbalance - Dissipation technique (QCM-D) was employed with an aim to study the adsorption behaviour of newly developed composites using ammonia as a model pollutant. The QCM-D data revealed that the presence of UHSZs in the CA materials increased adsorption capacity, designating CA/UHSZ composites as potential materials suitable for a large-scale removal of VOCs from polluted air.

17.
Front Chem ; 7: 581, 2019.
Article in English | MEDLINE | ID: mdl-31552215

ABSTRACT

This work describes the preparation of spin-coated thin polymer films composed of cellulose (CE), ethyl cellulose (EC), and cellulose acetate (CA) in the form of bi- or mono-component coatings on sensors of a quartz crystal microbalance with dissipation monitoring (QCM-D). Depending on the composition and derivative, hydrophilicity can be varied resulting in materials with different surface properties. The surfaces of mono- and bi-component films were also analyzed by atomic force microscopy (AFM) and large differences in the morphologies were found comprising nano- to micrometer sized pores. Extended protein adsorption studies were performed by a QCM-D with 0.1 and 10 mg mL-1 bovine serum albumin (BSA) and 0.1 and 1 mg mL-1 fibrinogen from bovine plasma in phosphate buffered saline. Analysis of the mass of bound proteins was conducted by applying the Voigt model and a comparison was made with the Sauerbrey wet mass of the proteins for all films. The amount of deposited proteins could be influenced by the composition of the films. It is proposed that the observed effects can be exploited in biomaterial science and that they can be used to extent the applicability of bio-based polymer thin films composed of commercial cellulose derivatives.

18.
Polymers (Basel) ; 11(10)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561552

ABSTRACT

The flavonoid rutin (RU) is a known antioxidant substance of plant origin. Its potential application in pharmaceutical and cosmetic fields is, however, limited, due to its low water solubility. This limitation can be overcome by polymerization of the phenolic RU into polyrutin (PR). In this work, an enzymatic polymerization of RU was performed in water, without the addition of organic solvents. Further, the chemical structure of PR was investigated using 1H NMR, and FTIR spectroscopy. Size-exclusion chromatography (SEC) was used to determine the molecular weight of PR, while its acid/base character was studied by potentiometric charge titrations. Additionally, this work investigated the antioxidant and free radical scavenging potential of PR with respect to its chemical structure, based on its ability to (i) scavenge non biological stable free radicals (ABTS), (ii) scavenge biologically important oxidants, such as O2•, NO•, and OH•, and (iii) chelate Fe2+. The influence of PR on fibroblast and HaCaT cell viability was evaluated to confirm the applicability of water soluble PR for wound healing application.

19.
Biomacromolecules ; 20(6): 2327-2337, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31070898

ABSTRACT

This work describes the interaction of the human blood plasma proteins albumin, fibrinogen, and γ-globulins with micro- and nanopatterned polymer interfaces. Protein adsorption studies were correlated with the fibrin clotting time of human blood plasma and with the growth of primary human pulmonary artery endothelial cells (hECs) on these patterns. It was observed that blends of polycaprolactone (PCL) and trimethylsilyl-protected cellulose form various thin-film patterns during spin coating, depending on the mass ratio of the polymers in the spinning solutions. Vapor-phase acid-catalyzed deprotection preserves these patterns but yields interfaces that are composed of hydrophilic cellulose domains enclosed by hydrophobic PCL. The blood plasma proteins are repelled by the cellulose domains, allowing for a suggested selective protein deposition on the PCL domains. An inverse proportional correlation is observed between the amount of cellulose present in the films and the mass of irreversibly adsorbed proteins. This results in significantly increased fibrin clotting times and lower masses of deposited clots on cellulose-containing films as revealed by quartz crystal microbalance with dissipation measurements. Cell viability of hECs grown on these surfaces was directly correlated with higher protein adsorption and faster clot formation. The results show that presented patterned polymer composite surfaces allow for a controllable blood plasma protein coagulation and a significant biological response from hECs. It is proposed that this knowledge can be utilized in regenerative medicine, cell cultures, and artificial vascular grafts by a careful choice of polymers and patterns.


Subject(s)
Blood Coagulation/drug effects , Cellulose , Endothelial Cells/metabolism , Fibrin/metabolism , Polyesters , Cell Line , Cell Survival/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Humans , Polyesters/chemistry , Polyesters/pharmacology
20.
Polymers (Basel) ; 11(3)2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30960479

ABSTRACT

The fabrication of superadsorbent for dye adsorption is a hot research area at present. However, the development of low-cost and highly efficient superadsorbents against toxic textile dyes is still a big challenge. Here, we fabricated hydrophobic cellulose nanofiber aerogels from cellulose nanofibers through an eco-friendly silanization reaction in liquid phase, which is an extremely efficient, rapid, cheap, and environmentally friendly procedure. Moreover, the demonstrated eco-friendly silanization technique is easy to commercialize at the industrial level. Most of the works that have reported on the hydrophobic cellulose nanofiber aerogels explored their use for the elimination of oil from water. The key novelty of the present work is that the demonstrated hydrophobic cellulose nanofibers aerogels could serve as superadsorbents against toxic textile dyes such as crystal violet dye from water and insulating materials for building applications. Here, we make use of the possible hydrophobic interactions between silane-modified cellulose nanofiber aerogel and crystal violet dye for the removal of the crystal violet dye from water. With a 10 mg/L of crystal violet (CV) aqueous solution, the silane-modified cellulose nanofiber aerogel showed a high adsorption capacity value of 150 mg/g of the aerogel. The reason for this adsorption value was due to the short-range hydrophobic interaction between the silane-modified cellulose nanofiber aerogel and the hydrophobic domains in crystal violet dye molecules. Additionally, the fabricated silane-modified cellulose nanofiber hydrophobic aerogels exhibited a lower thermal conductivity value of 0.037 W·m-1 K-1, which was comparable to and lower than the commercial insulators such as mineral wools (0.040 W·m-1 K-1) and polystyrene foams (0.035 W·m-1 K-1). We firmly believe that the demonstrated silane-modified cellulose nanofiber aerogel could yield an eco-friendly adsorbent that is agreeable to adsorbing toxic crystal violet dyes from water as well as active building thermal insulators.

SELECTION OF CITATIONS
SEARCH DETAIL
...