Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(3): e58296, 2013.
Article in English | MEDLINE | ID: mdl-23505481

ABSTRACT

The primary transcript of the mammalian Fragile X Mental Retardation-1 gene (Fmr1), like many transcripts in the central nervous system, is alternatively spliced to yield mRNAs encoding multiple proteins, which can possess quite different biochemical properties. Despite the fact that the relative levels of the 12 Fmr1 transcript isoforms examined here vary by as much as two orders of magnitude amongst themselves in both adult and embryonic mouse brain, all are associated with polyribosomes, consistent with translation into the corresponding isoforms of the protein product, FMRP (Fragile X Mental Retardation Protein). Employing the RiboTag methodology developed in our laboratory, the relative proportions of the 7 most abundant transcript isoforms were measured specifically in neurons and found to be similar to those identified in whole brain. Measurements of isoform profiles across 11 regions of adult brain yielded similar distributions, with the exceptions of the hippocampus and the olfactory bulb. These two regions differ from most of the brain in relative amounts of transcripts encoding an alternate form of one of the KH RNA binding domains. A possible relationship between patterns of expression in the hippocampus and olfactory bulb and the presence of neuroblasts in these two regions is suggested by the isoform patterns in early embryonic brain and in cultured neural progenitor cells. These results demonstrate that the relative levels of the Fmr1 isoforms are modulated according to developmental stage, highlighting the complex ramifications of losing all the protein isoforms in individuals with Fragile X Syndrome. It should also be noted that, of the eight most prominent FMRP isoforms (1-3, 6-9 and 12) in mouse, only two have the major site of phosphorylation at Ser-499, which is thought to be involved in some of the regulatory interactions of this protein.


Subject(s)
Brain/metabolism , Fragile X Mental Retardation Protein/genetics , Gene Expression Regulation , Polyribosomes/metabolism , RNA Isoforms , Alternative Splicing , Animals , Brain/embryology , Cells, Cultured , Gene Expression Regulation, Developmental , Gene Order , Male , Mice , Neural Stem Cells/metabolism
2.
Chembiochem ; 7(5): 839-43, 2006 May.
Article in English | MEDLINE | ID: mdl-16566048

ABSTRACT

The discovery of RNA-based catalysis 23 years ago dramatically changed the way biologists and biochemists thought of RNA. In the recent past, several ribozymes structures have provided some answers as to how catalysis is accomplished and how it relates to RNA structure and folding. However, there is still little information as to how catalytic activity evolved. Here we show that the small malachite green-binding aptamer has intrinsic catalytic potential that can be realized by designing the proper substrate. The charge distribution within the RNA binding pocket stabilizes the transition state of an ester hydrolysis reaction and thus accelerates the overall reaction. The results suggest that electrostatic forces can contribute significantly to RNA-based catalysis. Moreover, even simple RNA structures that have not been selected for catalytic properties can have a basic catalytic potential if they encounter the right substrate. This provides a possible starting point for the molecular evolution of more complex ribozymes.


Subject(s)
Aptamers, Nucleotide/chemistry , RNA, Catalytic/chemistry , RNA/chemistry , Rosaniline Dyes/chemistry , Aptamers, Nucleotide/chemical synthesis , Catalysis , Hydrogen-Ion Concentration , Hydrolysis , Ligands , Models, Molecular , Molecular Structure , Protein Conformation , Protein Structure, Tertiary , Structure-Activity Relationship
3.
Chembiochem ; 5(1): 62-72, 2004 Jan 03.
Article in English | MEDLINE | ID: mdl-14695514

ABSTRACT

Ribonucleic acids are an attractive drug target owing to their central role in many pathological processes. Notwithstanding this potential, RNA has only rarely been successfully targeted with novel drugs. The difficulty of targeting RNA is at least in part due to the unusual mode of binding found in most small-molecule-RNA complexes: the ligand binding pocket of the RNA is largely unstructured in the absence of ligand and forms a defined structure only with the ligand acting as scaffold for folding. Moreover, electrostatic interactions between RNA and ligand can also induce significant changes in the ligand structure due to the polyanionic nature of the RNA. Aptamers are ideal model systems to study these kinds of interactions owing to their small size and the ease with which they can be evolved to recognize a large variety of different ligands. Here we present the solution structure of an RNA aptamer that binds triphenyl dyes in complex with malachite green and compare it with a previously determined crystal structure of a complex formed with tetramethylrosamine. The structures illustrate how the same RNA binding pocket can adapt to accommodate both planar and nonplanar ligands. Binding studies with single- and double-substitution mutant aptamers are used to correlate three-dimensional structure with complex stability. The two RNA-ligand complex structures allow a discussion of structural changes that have been observed in the ligand in the context of the overall complex structure. Base pairing and stacking interactions within the RNA fold the phosphate backbone into a structure that results in an asymmetric charge distribution within the binding pocket that forces the ligand to adapt through a redistribution of the positive partial charge.


Subject(s)
RNA/chemistry , Rosaniline Dyes/chemistry , Coloring Agents/chemistry , Crystallography, X-Ray , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Mutation , Nucleic Acid Conformation , RNA/genetics , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...