Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EClinicalMedicine ; 70: 102498, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38495518

ABSTRACT

Background: Knowledge of gestational age (GA) is key in clinical management of individual obstetric patients, and critical to be able to calculate rates of preterm birth and small for GA at a population level. Currently, the gold standard for pregnancy dating is measurement of the fetal crown rump length at 11-14 weeks of gestation. However, this is not possible for women first presenting in later pregnancy, or in settings where routine ultrasound is not available. A reliable, cheap and easy to measure GA-dependent biomarker would provide an important breakthrough in estimating the age of pregnancy. Therefore, the aim of this study was to determine the accuracy of prenatal and postnatal biomarkers for estimating gestational age (GA). Methods: Systematic review prospectively registered with PROSPERO (CRD42020167727) and reported in accordance with the PRISMA-DTA. Medline, Embase, CINAHL, LILACS, and other databases were searched from inception until September 2023 for cohort or cross-sectional studies that reported on the accuracy of prenatal and postnatal biomarkers for estimating GA. In addition, we searched Google Scholar and screened proceedings of relevant conferences and reference lists of identified studies and relevant reviews. There were no language or date restrictions. Pooled coefficients of correlation and root mean square error (RMSE, average deviation in weeks between the GA estimated by the biomarker and that estimated by the gold standard method) were calculated. The risk of bias in each included study was also assessed. Findings: Thirty-nine studies fulfilled the inclusion criteria: 20 studies (2,050 women) assessed prenatal biomarkers (placental hormones, metabolomic profiles, proteomics, cell-free RNA transcripts, and exon-level gene expression), and 19 (1,738,652 newborns) assessed postnatal biomarkers (metabolomic profiles, DNA methylation profiles, and fetal haematological components). Among the prenatal biomarkers assessed, human chorionic gonadotrophin measured in maternal serum between 4 and 9 weeks of gestation showed the highest correlation with the reference standard GA, with a pooled coefficient of correlation of 0.88. Among the postnatal biomarkers assessed, metabolomic profiling from newborn blood spots provided the most accurate estimate of GA, with a pooled RMSE of 1.03 weeks across all GAs. It performed best for term infants with a slightly reduced accuracy for preterm or small for GA infants. The pooled RMSEs for metabolomic profiling and DNA methylation profile from cord blood samples were 1.57 and 1.60 weeks, respectively. Interpretation: We identified no antenatal biomarkers that accurately predict GA over a wide window of pregnancy. Postnatally, metabolomic profiling from newborn blood spot provides an accurate estimate of GA, however, as this is known only after birth it is not useful to guide antenatal care. Further prenatal studies are needed to identify biomarkers that can be used in isolation, as part of a biomarker panel, or in combination with other clinical methods to narrow prediction intervals of GA estimation. Funding: The research was funded by the Bill and Melinda Gates Foundation (INV-000368). ATP is supported by the Oxford Partnership Comprehensive Biomedical Research Centre with funding from the NIHR Biomedical Research Centre funding scheme. The views expressed are those of the authors and not necessarily those of the UK National Health Service, the NIHR, the Department of Health, or the Department of Biotechnology. The funders of this study had no role in study design, data collection, analysis or interpretation of the data, in writing the paper or the decision to submit for publication.

2.
NPJ Digit Med ; 6(1): 36, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36894653

ABSTRACT

Accurate estimation of gestational age is an essential component of good obstetric care and informs clinical decision-making throughout pregnancy. As the date of the last menstrual period is often unknown or uncertain, ultrasound measurement of fetal size is currently the best method for estimating gestational age. The calculation assumes an average fetal size at each gestational age. The method is accurate in the first trimester, but less so in the second and third trimesters as growth deviates from the average and variation in fetal size increases. Consequently, fetal ultrasound late in pregnancy has a wide margin of error of at least ±2 weeks' gestation. Here, we utilise state-of-the-art machine learning methods to estimate gestational age using only image analysis of standard ultrasound planes, without any measurement information. The machine learning model is based on ultrasound images from two independent datasets: one for training and internal validation, and another for external validation. During validation, the model was blinded to the ground truth of gestational age (based on a reliable last menstrual period date and confirmatory first-trimester fetal crown rump length). We show that this approach compensates for increases in size variation and is even accurate in cases of intrauterine growth restriction. Our best machine-learning based model estimates gestational age with a mean absolute error of 3.0 (95% CI, 2.9-3.2) and 4.3 (95% CI, 4.1-4.5) days in the second and third trimesters, respectively, which outperforms current ultrasound-based clinical biometry at these gestational ages. Our method for dating the pregnancy in the second and third trimesters is, therefore, more accurate than published methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...