Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 44(3): 921-7, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20050656

ABSTRACT

The influence of dissolved CO(2) on the sorption of trivalent curium (Cm) on alumina (gamma-Al(2)O(3)) and kaolinite was investigated by time resolved laser fluorescence spectroscopy (TRLFS) using the optical properties of Cm as a local luminescent probe. Measurements were performed at T < 20 K on Cm loaded gamma-Al(2)O(3) and kaolinite wet pastes prepared in the absence and presence of carbonate in order to pictorially illustrate any changes through a direct comparison of spectra from both systems. The red-shift of excitation and emission spectra, as well as the increase of fluorescence lifetimes observed in the samples with carbonate, clearly showed the influence of carbonate and was fully consistent with the formation of Cm(III) surface species involving carbonate complexes. In addition, the biexponential decay behavior of the fluorescence lifetime indicated that at least two different Cm(III)-carbonate species exist at the mineral-water interface. These results provide the first spectroscopic evidence for the formation of ternary Cm(III)-carbonate surface complexes.


Subject(s)
Carbonates/chemistry , Curium/chemistry , Adsorption , Aluminum Oxide , Spectrum Analysis , Surface Properties
2.
J Colloid Interface Sci ; 300(1): 78-87, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16631772

ABSTRACT

In the present study the binding of strontium with pure calcium silicate hydrates (C-S-H) has been investigated using batch-type experiments. Synthetic C-S-H phases with varying CaO:SiO(2) (C:S) mol ratios, relevant to non-degraded and degraded hardened cement paste, were prepared in the absence of alkalis (Na(I), K(I)) and in an alkali-rich artificial cement pore water (ACW). Two types of experimental approaches have been employed, investigating sorption and co-precipitation processes, respectively. The Sr(II) sorption kinetics were determined as well as sorption isotherms, the effect of the solid to liquid ratio and the composition (C:S ratio) of the C-S-H phases. In addition, the reversibility of the Sr(II) sorption was tested. It was shown that both the sorption and co-precipitation tests resulted in Sr(II) distribution ratios which were similar in value, indicating that the same sites are involved in Sr(II) binding. In alkali-free solutions, the Sr(II) uptake by C-S-H phases was described in terms of a Sr(2+)-Ca(2+) ion exchange model. The selectivity coefficient for the Sr(2+)-Ca(2+) exchange was determined to be 1.2+/-0.3.


Subject(s)
Calcium Compounds/chemistry , Environmental Restoration and Remediation/methods , Silicates/chemistry , Strontium Radioisotopes/isolation & purification , Strontium/isolation & purification , Radioactive Pollutants/chemistry , Radioactive Pollutants/isolation & purification , Strontium/chemistry , Strontium Radioisotopes/chemistry
3.
J Contam Hydrol ; 61(1-4): 73-83, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12598095

ABSTRACT

Diffusion coefficients (T=23 +/- 2 degrees C) and accessible porosities for HTO, 36Cl(-) and 125I(-) were measured on Opalinus Clay (OPA) samples from the Mont Terri Underground Rock Laboratory (URL) using the through-diffusion technique. The direction of transport (diffusion) was perpendicular to bedding. Special cells that allowed the application of confining pressure were designed and constructed. The pressures ranged from 1 to 5 MPa, the latter value simulating the overburden at the Mont Terri URL (about 200 m). The test solution used in the experiments was a synthetic version of the Opalinus Clay pore water, which has Na(+) and Cl(-) as the main components (I=0.42 M). The measured values of the effective diffusion coefficients (D(e)) and rock capacity factors (alpha) are: D(e)=1.2-1.5 x 10(-11) m(2) s(-1) and alpha=0.09-0.11 for HTO, D(e)=4.0-5.5 x 10(-12) m(2) s(-1) and alpha=0.05 for 36Cl(-) and D(e)=3.2-4.6 x 10(-12) m(2) s(-1) and alpha=0.07-0.10 for 125I(-). For non-sorbing tracers (HTO, 36Cl) the rock capacity factor alpha is equal to the diffusion-accessible porosity epsilon. The experimental results showed that pressure only had a small effect on the value of the diffusion coefficients. Increasing the pressure from 1 to 5 MPa resulted in a decrease of the diffusion coefficient of approximately 17% for HTO, approximately 28% for 36Cl(-) and approximately 30% for 125I(-). Moreover, the diffusion coefficients for 36Cl(-) and 125I(-) are smaller than for HTO, which is consistent with an effect arising from anion exclusion. The diffusion coefficients of HTO and 125I(-) measured in this study are in good agreement with recent measurements at three other laboratories performed within the framework of a laboratory comparison exercise. The values of the diffusion-accessible porosities show a larger degree of scatter.


Subject(s)
Aluminum Silicates/chemistry , Chlorine/chemistry , Iodine Radioisotopes/chemistry , Models, Theoretical , Radioactive Waste , Radioisotopes/chemistry , Clay , Diffusion , Porosity , Pressure
4.
J Synchrotron Radiat ; 8(Pt 2): 533-5, 2001 Mar 01.
Article in English | MEDLINE | ID: mdl-11512841

ABSTRACT

Polarized extended X-ray absorption fine structure spectroscopy (P-EXAFS) was used to study the sorption mechanism of Ni on the aluminous hydrous silicate montmorillonite at high ionic strength (0.3 M NaClO4), pH 8 and a Ni concentration of 0.66 mM. Highly textured self-supporting clay films were obtained by slowly filtrating a clay suspension after a reaction time of 14 days. P-EXAFS results indicate that sorbed Ni has a Ni clay-like structural environment with the same crystallographic orientation as montmorillonite layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...