Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 20(209): 20230374, 2023 12.
Article in English | MEDLINE | ID: mdl-38086402

ABSTRACT

A key challenge for public health policymakers is determining when an infectious disease outbreak has finished. Following a period without cases, an estimate of the probability that no further cases will occur in future (the end-of-outbreak probability) can be used to inform whether or not to declare an outbreak over. An existing quantitative approach (the Nishiura method), based on a branching process transmission model, allows the end-of-outbreak probability to be approximated from disease incidence time series, the offspring distribution and the serial interval distribution. Here, we show how the end-of-outbreak probability under the same transmission model can be calculated exactly if data describing who-infected-whom (the transmission tree) are also available (e.g. from contact tracing studies). In that scenario, our novel approach (the traced transmission method) is straightforward to use. We demonstrate this by applying the method to data from previous outbreaks of Ebola virus disease and Nipah virus infection. For both outbreaks, the traced transmission method would have determined that the outbreak was over earlier than the Nishiura method. This highlights that collection of contact tracing data and application of the traced transmission method may allow stringent control interventions to be relaxed quickly at the end of an outbreak, with only a limited risk of outbreak resurgence.


Subject(s)
Contact Tracing , Hemorrhagic Fever, Ebola , Humans , Contact Tracing/methods , Disease Outbreaks/prevention & control , Hemorrhagic Fever, Ebola/epidemiology , Public Health , Probability
2.
Nat Sustain ; 2(9): 834-840, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31535037

ABSTRACT

Movements are essential for the economic success of the livestock industry. These movements however bring the risk of long-range spread of infection, potentially bringing infection to previously disease-free areas where subsequent localised transmission can be devastating. Mechanistic predictive models usually consider controls that minimize the number of livestock affected without considering other costs of an ongoing epidemic. However, it is more appropriate to consider the economic burden, as movement restrictions have major consequences for the economic revenue of farms. Using mechanistic models of foot-and-mouth disease (FMD), bluetongue virus (BTV) and bovine tuberculosis (bTB) in the UK, we contrast the economically optimal control strategies for these diseases. We show that for FMD, the optimal strategy is to ban movements in a small radius around infected farms; the balance between disease control and maintaining 'business as usual' varies between regions. For BTV and bTB, we find that the cost of any movement ban is more than the epidemiological benefits due to the low within-farm prevalence and slow rate of disease spread. This work suggests that movement controls need to be carefully matched to the epidemiological and economic consequences of the disease, and optimal movement bans are often far shorter than existing policy.

SELECTION OF CITATIONS
SEARCH DETAIL
...