Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Patterns (N Y) ; 3(8): 100555, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36033586

ABSTRACT

A fundamental problem in science is uncovering the effective number of degrees of freedom in a complex system: its dimensionality. A system's dimensionality depends on its spatiotemporal scale. Here, we introduce a scale-dependent generalization of a classic enumeration of latent variables, the participation ratio. We demonstrate how the scale-dependent participation ratio identifies the appropriate dimension at local, intermediate, and global scales in several systems such as the Lorenz attractor, hidden Markov models, and switching linear dynamical systems. We show analytically how, at different limiting scales, the scale-dependent participation ratio relates to well-established measures of dimensionality. This measure applied in neural population recordings across multiple brain areas and brain states shows fundamental trends in the dimensionality of neural activity-for example, in behaviorally engaged versus spontaneous states. Our novel method unifies widely used measures of dimensionality and applies broadly to multivariate data across several fields of science.

2.
Proc Natl Acad Sci U S A ; 117(10): 5144-5151, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32071241

ABSTRACT

Some bacteria and archaea possess an immune system, based on the CRISPR-Cas mechanism, that confers adaptive immunity against viruses. In such species, individual prokaryotes maintain cassettes of viral DNA elements called spacers as a memory of past infections. Typically, the cassettes contain several dozen expressed spacers. Given that bacteria can have very large genomes and since having more spacers should confer a better memory, it is puzzling that so little genetic space would be devoted by prokaryotes to their adaptive immune systems. Here, assuming that CRISPR functions as a long-term memory-based defense against a diverse landscape of viral species, we identify a fundamental tradeoff between the amount of immune memory and effectiveness of response to a given threat. This tradeoff implies an optimal size for the prokaryotic immune repertoire in the observational range.


Subject(s)
Adaptive Immunity , Bacteria/genetics , Bacteria/virology , Bacteriophages , CRISPR-Cas Systems/physiology
3.
Philos Trans R Soc Lond B Biol Sci ; 374(1772): 20180095, 2019 05 13.
Article in English | MEDLINE | ID: mdl-30905281

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-mediated immunity in bacteria allows bacterial populations to protect themselves against pathogens. However, it also exposes them to the dangers of auto-immunity by developing protection that targets its own genome. Using a simple model of the coupled dynamics of phage and bacterial populations, we explore how acquisition rates affect the probability of the bacterial colony going extinct. We find that the optimal strategy depends on the initial population sizes of both viruses and bacteria. Additionally, certain combinations of acquisition and dynamical rates and initial population sizes guarantee protection, owing to a dynamical balance between the evolving population sizes, without relying on acquisition of viral spacers. Outside this regime, the high cost of auto-immunity limits the acquisition rate. We discuss these optimal strategies that minimize the probability of the colony going extinct in terms of recent experiments. This article is part of a discussion meeting issue 'The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems'.


Subject(s)
Bacteria/genetics , Bacteriophages/genetics , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Models, Biological
5.
PLoS Comput Biol ; 13(4): e1005486, 2017 04.
Article in English | MEDLINE | ID: mdl-28414716

ABSTRACT

The CRISPR (clustered regularly interspaced short palindromic repeats) mechanism allows bacteria to adaptively defend against phages by acquiring short genomic sequences (spacers) that target specific sequences in the viral genome. We propose a population dynamical model where immunity can be both acquired and lost. The model predicts regimes where bacterial and phage populations can co-exist, others where the populations exhibit damped oscillations, and still others where one population is driven to extinction. Our model considers two key parameters: (1) ease of acquisition and (2) spacer effectiveness in conferring immunity. Analytical calculations and numerical simulations show that if spacers differ mainly in ease of acquisition, or if the probability of acquiring them is sufficiently high, bacteria develop a diverse population of spacers. On the other hand, if spacers differ mainly in their effectiveness, their final distribution will be highly peaked, akin to a "winner-take-all" scenario, leading to a specialized spacer distribution. Bacteria can interpolate between these limiting behaviors by actively tuning their overall acquisition probability.


Subject(s)
Bacteria/genetics , Bacteria/virology , Bacteriophages/pathogenicity , Host-Pathogen Interactions/genetics , CRISPR-Cas Systems/genetics , Computational Biology , Genome, Bacterial/genetics , Models, Biological
6.
J Stat Phys ; 167(3-4): 462-475, 2017 May.
Article in English | MEDLINE | ID: mdl-30034029

ABSTRACT

A system with many degrees of freedom can be characterized by a covariance matrix; principal components analysis (PCA) focuses on the eigenvalues of this matrix, hoping to find a lower dimensional description. But when the spectrum is nearly continuous, any distinction between components that we keep and those that we ignore becomes arbitrary; it then is natural to ask what happens as we vary this arbitrary cutoff. We argue that this problem is analogous to the momentum shell renormalization group (RG). Following this analogy, we can define relevant and irrelevant operators, where the role of dimensionality is played by properties of the eigenvalue density. These results also suggest an approach to the analysis of real data. As an example, we study neural activity in the vertebrate retina as it responds to naturalistic movies, and find evidence of behavior controlled by a nontrivial fixed point. Applied to financial data, our analysis separates modes dominated by sampling noise from a smaller but still macroscopic number of modes described by a non-Gaussian distribution.

7.
Curr Biol ; 25(3): 385-391, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25544609

ABSTRACT

How cells control their size and maintain size homeostasis is a fundamental open question. Cell-size homeostasis has been discussed in the context of two major paradigms: "sizer," in which the cell actively monitors its size and triggers the cell cycle once it reaches a critical size, and "timer," in which the cell attempts to grow for a specific amount of time before division. These paradigms, in conjunction with the "growth law" [1] and the quantitative bacterial cell-cycle model [2], inspired numerous theoretical models [3-9] and experimental investigations, from growth [10, 11] to cell cycle and size control [12-15]. However, experimental evidence involved difficult-to-verify assumptions or population-averaged data, which allowed different interpretations [1-5, 16-20] or limited conclusions [4-9]. In particular, population-averaged data and correlations are inconclusive as the averaging process masks causal effects at the cellular level. In this work, we extended a microfluidic "mother machine" [21] and monitored hundreds of thousands of Gram-negative Escherichia coli and Gram-positive Bacillus subtilis cells under a wide range of steady-state growth conditions. Our combined experimental results and quantitative analysis demonstrate that cells add a constant volume each generation, irrespective of their newborn sizes, conclusively supporting the so-called constant Δ model. This model was introduced for E. coli [6, 7] and recently revisited [9], but experimental evidence was limited to correlations. This "adder" principle quantitatively explains experimental data at both the population and single-cell levels, including the origin and the hierarchy of variability in the size-control mechanisms and how cells maintain size homeostasis.


Subject(s)
Escherichia coli/cytology , Escherichia coli/growth & development , Homeostasis/physiology , Models, Biological
8.
PLoS Comput Biol ; 8(4): e1002497, 2012.
Article in English | MEDLINE | ID: mdl-22577356

ABSTRACT

The intestinal microbiota plays important roles in digestion and resistance against entero-pathogens. As with other ecosystems, its species composition is resilient against small disturbances but strong perturbations such as antibiotics can affect the consortium dramatically. Antibiotic cessation does not necessarily restore pre-treatment conditions and disturbed microbiota are often susceptible to pathogen invasion. Here we propose a mathematical model to explain how antibiotic-mediated switches in the microbiota composition can result from simple social interactions between antibiotic-tolerant and antibiotic-sensitive bacterial groups. We build a two-species (e.g. two functional-groups) model and identify regions of domination by antibiotic-sensitive or antibiotic-tolerant bacteria, as well as a region of multistability where domination by either group is possible. Using a new framework that we derived from statistical physics, we calculate the duration of each microbiota composition state. This is shown to depend on the balance between random fluctuations in the bacterial densities and the strength of microbial interactions. The singular value decomposition of recent metagenomic data confirms our assumption of grouping microbes as antibiotic-tolerant or antibiotic-sensitive in response to a single antibiotic. Our methodology can be extended to multiple bacterial groups and thus it provides an ecological formalism to help interpret the present surge in microbiome data.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Communication/drug effects , Cell Communication/physiology , Intestines/microbiology , Models, Biological , Models, Statistical , Social Behavior , Computer Simulation , Intestines/drug effects
9.
Phys Rev Lett ; 104(21): 218701, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20867147

ABSTRACT

An anomalous mean-field solution is known to capture the nontrivial phase diagram of the Ising model in annealed complex networks. Nevertheless, the critical fluctuations in random complex networks remain mean field. Here we show that a breakdown of this scenario can be obtained when complex networks are embedded in geometrical spaces. Through the analysis of the Ising model on annealed spatial networks, we reveal, in particular, the spectral properties of networks responsible for critical fluctuations and we generalize the Ginsburg criterion to complex topologies.


Subject(s)
Models, Theoretical , Phase Transition
SELECTION OF CITATIONS
SEARCH DETAIL
...