Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Physiol Behav ; 226: 113128, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32791178

ABSTRACT

Currently, over 44 million people worldwide suffer from Alzheimer's disease (AD). A common feature of AD is disrupted sleep. Sleep is essential for many psychological and physiological functions, though 35.3% of adults report getting less than 7 hours per night. The present research examined whether chronic sleep restriction would elevate hippocampal amyloid-beta1-42 expression or alter cognitive ability in adult C57BL/6 mice. Chronic sleep restriction was associated with cognitive impairment and increased hippocampal amyloid-beta. Thus, chronic sleep loss may have a detrimental effect upon cognitive function, in part, via increasing amyloid-beta levels in the hippocampus, even in non-genetically modified mice.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cognition , Hippocampus , Sleep Deprivation , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Sleep
2.
Inorg Chem ; 58(24): 16771-16784, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31774280

ABSTRACT

Alzheimer's and other neurodegenerative diseases are chronic conditions affecting millions of individuals worldwide. Oxidative stress is a consistent component described in the development of many neurodegenerative diseases. Therefore, innovative strategies to develop drug candidates that overcome oxidative stress in the brain are needed. To target these challenges, a new, water-soluble 12-membered tetraaza macrocyclic pyridinophane L4 was designed and produced using a building-block approach. Potentiometric data show that the neutral species of L4 provides interesting zwitterionic behavior at physiological pH, akin to amino acids, and a nearly ideal isoelectric point of 7.3. The copper(II) complex of L4 was evaluated by X-ray diffraction and cyclic voltammetry to show the potential modes of antioxidant activity derived, which was also demonstrated by 2,2-diphenyl-1-picrylhydrazyl and coumarin carboxylic acid antioxidant assays. L4 was shown to have dramatically enhanced antioxidant activity and increased biological compatibility compared to parent molecules reported previously. L4 attenuated hydrogen peroxide (H2O2)-induced cell viability loss more efficiently than precursor molecules in the mouse hippocampal HT-22 cell model. L4 also showed potent (fM) level protection against H2O2 cell death in a BV2 microglial cell culture. Western blot studies indicated that L4 enhanced the cellular antioxidant defense capacity via Nrf2 signaling activation as well. Moreover, a low-cost analysis and high metabolic stability in phase I and II models were observed. These encouraging results show how the rational design of lead compounds is a suitable strategy for the development of treatments for neurodegenerative diseases where oxidative stress plays a substantial role.

SELECTION OF CITATIONS
SEARCH DETAIL