Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Cell Genom ; 4(5): 100556, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38697123

ABSTRACT

The ch12q13 locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via cis-regulation. We implicated rs7132908 as a putative causal variant by leveraging our in-house 3D genomic data and public domain datasets. Using a luciferase reporter assay, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. We generated isogenic human embryonic stem cell lines homozygous for either rs7132908 allele to assess changes in gene expression and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. The rs7132908 obesity risk allele influenced expression of FAIM2 and other genes and decreased the proportion of neurons produced by differentiation. We have functionally validated rs7132908 as a causal obesity variant that temporally regulates nearby effector genes and influences neurodevelopment and survival.


Subject(s)
3' Untranslated Regions , Apoptosis Regulatory Proteins , Membrane Proteins , Pediatric Obesity , Child , Humans , 3' Untranslated Regions/genetics , Alleles , Cell Differentiation/genetics , Chromosomes, Human, Pair 12/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Human Embryonic Stem Cells/metabolism , Neurons/metabolism , Pediatric Obesity/genetics , Polymorphism, Single Nucleotide/genetics , Membrane Proteins/genetics , Apoptosis Regulatory Proteins/genetics
2.
medRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38559031

ABSTRACT

Genetic effects on changes in human traits over time are understudied and may have important pathophysiological impact. We propose a framework that enables data quality control, implements mixed models to evaluate trajectories of change in traits, and estimates phenotypes to identify age-varying genetic effects in genome-wide association studies (GWASs). Using childhood body mass index (BMI) as an example, we included 71,336 participants from six cohorts and estimated the slope and area under the BMI curve within four time periods (infancy, early childhood, late childhood and adolescence) for each participant, in addition to the age and BMI at the adiposity peak and the adiposity rebound. GWAS on each of the estimated phenotypes identified 28 genome-wide significant variants at 13 loci across the 12 estimated phenotypes, one of which was novel (in DAOA) and had not been previously associated with childhood or adult BMI. Genetic studies of changes in human traits over time could uncover novel biological mechanisms influencing quantitative traits.

3.
Genome Biol Evol ; 16(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302106

ABSTRACT

Regions under balancing selection are characterized by dense polymorphisms and multiple persistent haplotypes, along with other sequence complexities. Successful identification of these patterns depends on both the statistical approach and the quality of sequencing. To address this challenge, at first, a new statistical method called LD-ABF was developed, employing efficient Bayesian techniques to effectively test for balancing selection. LD-ABF demonstrated the most robust detection of selection in a variety of simulation scenarios, compared against a range of existing tests/tools (Tajima's D, HKA, Dng, BetaScan, and BalLerMix). Furthermore, the impact of the quality of sequencing on detection of balancing selection was explored, as well, using: (i) SNP genotyping and exome data, (ii) targeted high-resolution HLA genotyping (IHIW), and (iii) whole-genome long-read sequencing data (Pangenome). In the analysis of SNP genotyping and exome data, we identified known targets and 38 new selection signatures in genes not previously linked to balancing selection. To further investigate the impact of sequencing quality on detection of balancing selection, a detailed investigation of the MHC was performed with high-resolution HLA typing data. Higher quality sequencing revealed the HLA-DQ genes consistently demonstrated strong selection signatures otherwise not observed from the sparser SNP array and exome data. The HLA-DQ selection signature was also replicated in the Pangenome samples using considerably less samples but, with high-quality long-read sequence data. The improved statistical method, coupled with higher quality sequencing, leads to more consistent identification of selection and enhanced localization of variants under selection, particularly in complex regions.


Subject(s)
HLA-DQ Antigens , Polymorphism, Single Nucleotide , Gene Frequency , Linkage Disequilibrium , Bayes Theorem , Haplotypes , HLA-DQ Antigens/genetics
4.
Genome Biol ; 25(1): 22, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229171

ABSTRACT

BACKGROUND: Pubertal growth patterns correlate with future health outcomes. However, the genetic mechanisms mediating growth trajectories remain largely unknown. Here, we modeled longitudinal height growth with Super-Imposition by Translation And Rotation (SITAR) growth curve analysis on ~ 56,000 trans-ancestry samples with repeated height measurements from age 5 years to adulthood. We performed genetic analysis on six phenotypes representing the magnitude, timing, and intensity of the pubertal growth spurt. To investigate the lifelong impact of genetic variants associated with pubertal growth trajectories, we performed genetic correlation analyses and phenome-wide association studies in the Penn Medicine BioBank and the UK Biobank. RESULTS: Large-scale growth modeling enables an unprecedented view of adolescent growth across contemporary and 20th-century pediatric cohorts. We identify 26 genome-wide significant loci and leverage trans-ancestry data to perform fine-mapping. Our data reveals genetic relationships between pediatric height growth and health across the life course, with different growth trajectories correlated with different outcomes. For instance, a faster tempo of pubertal growth correlates with higher bone mineral density, HOMA-IR, fasting insulin, type 2 diabetes, and lung cancer, whereas being taller at early puberty, taller across puberty, and having quicker pubertal growth were associated with higher risk for atrial fibrillation. CONCLUSION: We report novel genetic associations with the tempo of pubertal growth and find that genetic determinants of growth are correlated with reproductive, glycemic, respiratory, and cardiac traits in adulthood. These results aid in identifying specific growth trajectories impacting lifelong health and show that there may not be a single "optimal" pubertal growth pattern.


Subject(s)
Diabetes Mellitus, Type 2 , Genome-Wide Association Study , Adult , Adolescent , Humans , Child , Child, Preschool , Puberty/genetics , Phenotype , Body Height/genetics , Outcome Assessment, Health Care , Longitudinal Studies
5.
Eur Urol ; 85(4): 337-345, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37246069

ABSTRACT

BACKGROUND: Testicular germ cell tumor (TGCT) is the most common cancer among young White men. TGCT is highly heritable, although there are no known high-penetrance predisposition genes. CHEK2 is associated with moderate TGCT risk. OBJECTIVE: To identify coding genomic variants associated with predisposition to TGCT. DESIGN, SETTING, AND PARTICIPANTS: The study involved 293 men with familial or bilateral (high risk; HR)-TGCT representing 228 unique families and 3157 cancer-free controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We carried out exome sequencing and gene burden analysis to identify associations with TGCT risk. RESULTS AND LIMITATIONS: Gene burden association identified several genes, including loss-of-function variants of NIN and QRSL1. We identified no statistically significant association with the sex- and germ-cell development pathways (hypergeometric overlap test: p = 0.65 for truncating variants, p = 0.47 for all variants) or evidence of associations with the regions previously identified via genome-wide association studies (GWAS). When considering all significant coding variants together with genes associated with TGCT on GWAS, there were associations with three major pathways: mitosis/cell cycle (Gene Ontology identity GO:1903047: observed/expected variant ratio [O/E] 6.17, false discovery rate [FDR] 1.53 × 10-11), co-translational protein targeting (GO:0006613: O/E 18.62, FDR 1.35 × 10-10), and sex differentiation (GO:0007548: O/E 5.25, FDR 1.90 × 10-4). CONCLUSIONS: To the best of our knowledge, this study is the largest to date on men with HR-TGCT. As in previous studies, we identified associations with variants for several genes, suggesting multigenic heritability. We identified associations with co-translational protein targeting, and chromosomal segregation and sex determination, identified via GWAS. Our results suggest potentially druggable targets for TGCT prevention or treatment. PATIENT SUMMARY: We searched for gene variations that increase the risk of testicular cancer and found numerous new specific variants that contribute to this risk. Our results support the idea that many gene variants inherited together contribute to the risk of testicular cancer.


Subject(s)
Neoplasms, Germ Cell and Embryonal , Testicular Neoplasms , Male , Humans , Testicular Neoplasms/genetics , Testicular Neoplasms/pathology , Genetic Predisposition to Disease , Genome-Wide Association Study , Exome Sequencing , Case-Control Studies , Neoplasms, Germ Cell and Embryonal/genetics , Germ Cells/pathology
7.
Nat Genet ; 55(4): 559-567, 2023 04.
Article in English | MEDLINE | ID: mdl-37012456

ABSTRACT

The timing of parturition is crucial for neonatal survival and infant health. Yet, its genetic basis remains largely unresolved. We present a maternal genome-wide meta-analysis of gestational duration (n = 195,555), identifying 22 associated loci (24 independent variants) and an enrichment in genes differentially expressed during labor. A meta-analysis of preterm delivery (18,797 cases, 260,246 controls) revealed six associated loci and large genetic similarities with gestational duration. Analysis of the parental transmitted and nontransmitted alleles (n = 136,833) shows that 15 of the gestational duration genetic variants act through the maternal genome, whereas 7 act both through the maternal and fetal genomes and 2 act only via the fetal genome. Finally, the maternal effects on gestational duration show signs of antagonistic pleiotropy with the fetal effects on birth weight: maternal alleles that increase gestational duration have negative fetal effects on birth weight. The present study provides insights into the genetic effects on the timing of parturition and the complex maternal-fetal relationship between gestational duration and birth weight.


Subject(s)
Parturition , Premature Birth , Pregnancy , Infant, Newborn , Female , Humans , Birth Weight/genetics , Parturition/genetics , Premature Birth/genetics , Gestational Age
8.
Front Immunol ; 14: 1101488, 2023.
Article in English | MEDLINE | ID: mdl-36817429

ABSTRACT

Introduction: Type 1 diabetes, a disorder caused by autoimmune destruction of pancreatic insulin-producing cells, is more difficult to manage when it presents at a younger age. We sought to identify genetic correlates of the age of onset by conducting the first genome-wide association study (GWAS) treating the age of first diagnosis as a quantitative trait. Methods: We performed GWAS with a discovery cohort of 4,014 cases and a replication cohort of 493 independent cases. Genome-wide significant SNPs were mapped to a causal variant by Bayesian conditional analysis and gel shift assay. The causal protein-coding gene was identified and characterized by RNA interference treatment of primary human pan-CD4+ T cells with RNA-seq of the transcriptome. The candidate gene was evaluated functionally in primary cells by CD69 staining and proliferation assays. Results: Our GWAS replicated the known association of the age of diagnosis with the human leukocyte antigen complex (HLA-DQB1). The second signal identified was in an intron of the NELL1 gene on chromosome 11 and fine-mapped to variant rs10833518 (P < 1.54 × 10-9). Homozygosity for the risk allele leads to average age of onset one year earlier. Knock-down of HIV TAT-interacting protein 2 (HTATIP2), but not other genes in the locus, resulted in alterations to gene expression in signal transduction pathways including MAP kinases and PI3-kinase. Higher levels of HTATIP2 expression are associated with increased viability, proliferation, and activation of T cells in the presence of signals from antigen and cytokine receptors. Discussion: This study implicates HTATIP2 as a new type 1 diabetes gene acting via T cell regulation. Larger population sample sizes are expected to reveal additional loci.


Subject(s)
Diabetes Mellitus, Type 1 , Genome-Wide Association Study , Humans , Acetyltransferases , Age of Onset , Bayes Theorem , Genetic Predisposition to Disease , Transcription Factors , T-Lymphocytes/immunology
10.
Nature ; 610(7933): 704-712, 2022 10.
Article in English | MEDLINE | ID: mdl-36224396

ABSTRACT

Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes1. Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel2) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.


Subject(s)
Body Height , Chromosome Mapping , Polymorphism, Single Nucleotide , Humans , Body Height/genetics , Gene Frequency/genetics , Genome, Human/genetics , Genome-Wide Association Study , Haplotypes/genetics , Linkage Disequilibrium/genetics , Polymorphism, Single Nucleotide/genetics , Europe/ethnology , Sample Size , Phenotype
11.
BMC Med Genomics ; 15(1): 124, 2022 06 04.
Article in English | MEDLINE | ID: mdl-35659227

ABSTRACT

BACKGROUND: Head circumference is associated with intelligence and tracks from childhood into adulthood. METHODS: We performed a genome-wide association study meta-analysis and follow-up of head circumference in a total of 29,192 participants between 6 and 30 months of age. RESULTS: Seven loci reached genome-wide significance in the combined discovery and replication analysis of which three loci near ARFGEF2, MYCL1, and TOP1, were novel. We observed positive genetic correlations for early-life head circumference with adult intracranial volume, years of schooling, childhood and adult intelligence, but not with adult psychiatric, neurological, or personality-related phenotypes. CONCLUSIONS: The results of this study indicate that the biological processes underlying early-life head circumference overlap largely with those of adult head circumference. The associations of early-life head circumference with cognitive outcomes across the life course are partly explained by genetics.


Subject(s)
Cognition , Genome-Wide Association Study , Adult , Child , Educational Status , Genome-Wide Association Study/methods , Humans , Phenotype
12.
HGG Adv ; 3(2): 100099, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35399580

ABSTRACT

Hispanic/Latinos have been underrepresented in genome-wide association studies (GWAS) for anthropometric traits despite their notable anthropometric variability, ancestry proportions, and high burden of growth stunting and overweight/obesity. To address this knowledge gap, we analyzed densely imputed genetic data in a sample of Hispanic/Latino adults to identify and fine-map genetic variants associated with body mass index (BMI), height, and BMI-adjusted waist-to-hip ratio (WHRadjBMI). We conducted a GWAS of 18 studies/consortia as part of the Hispanic/Latino Anthropometry (HISLA) Consortium (stage 1, n = 59,771) and generalized our findings in 9 additional studies (stage 2, n = 10,538). We conducted a trans-ancestral GWAS with summary statistics from HISLA stage 1 and existing consortia of European and African ancestries. In our HISLA stage 1 + 2 analyses, we discovered one BMI locus, as well as two BMI signals and another height signal each within established anthropometric loci. In our trans-ancestral meta-analysis, we discovered three BMI loci, one height locus, and one WHRadjBMI locus. We also identified 3 secondary signals for BMI, 28 for height, and 2 for WHRadjBMI in established loci. We show that 336 known BMI, 1,177 known height, and 143 known WHRadjBMI (combined) SNPs demonstrated suggestive transferability (nominal significance and effect estimate directional consistency) in Hispanic/Latino adults. Of these, 36 BMI, 124 height, and 11 WHRadjBMI SNPs were significant after trait-specific Bonferroni correction. Trans-ancestral meta-analysis of the three ancestries showed a small-to-moderate impact of uncorrected population stratification on the resulting effect size estimates. Our findings demonstrate that future studies may also benefit from leveraging diverse ancestries and differences in linkage disequilibrium patterns to discover novel loci and additional signals with less residual population stratification.

13.
Arthritis Rheumatol ; 74(8): 1420-1429, 2022 08.
Article in English | MEDLINE | ID: mdl-35347896

ABSTRACT

OBJECTIVE: Juvenile idiopathic arthritis (JIA) is the most common chronic immune-mediated joint disease among children and encompasses a heterogeneous group of immune-mediated joint disorders classified into 7 subtypes according to clinical presentation. However, phenotype overlap and biologic evidence suggest a shared mechanistic basis between subtypes. This study was undertaken to systematically investigate shared genetic underpinnings of JIA subtypes. METHODS: We performed a heterogeneity-sensitive genome-wide association study encompassing a total of 1,245 JIA cases (classified into 7 subtypes) and 9,250 controls, followed by fine-mapping of candidate causal variants at each genome-wide significant locus, functional annotation, and pathway and network analysis. We further identified candidate drug targets and drug repurposing opportunities by in silico analyses. RESULTS: In addition to the major histocompatibility complex locus, we identified 15 genome-wide significant loci shared between at least 2 JIA subtypes, including 10 novel loci. Functional annotation indicated that candidate genes at these loci were expressed in diverse immune cell types. CONCLUSION: This study identified novel genetic loci shared by JIA subtypes. Our findings identified candidate mechanisms underlying JIA subtypes and candidate targets with drug repurposing opportunities for JIA treatment.


Subject(s)
Arthritis, Juvenile , Arthritis, Juvenile/drug therapy , Arthritis, Juvenile/genetics , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Polymorphism, Single Nucleotide
14.
Nat Commun ; 12(1): 6749, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34799566

ABSTRACT

The hypothalamus regulates metabolic homeostasis by influencing behavior and endocrine systems. Given its role governing key traits, such as body weight and reproductive timing, understanding the genetic regulation of hypothalamic development and function could yield insights into disease pathogenesis. However, given its inaccessibility, studying human hypothalamic gene regulation has proven challenging. To address this gap, we generate a high-resolution chromatin architecture atlas of an established embryonic stem cell derived hypothalamic-like neuron model across three stages of in vitro differentiation. We profile accessible chromatin and identify physical contacts between gene promoters and putative cis-regulatory elements to characterize global regulatory landscape changes during hypothalamic differentiation. Next, we integrate these data with GWAS loci for various complex traits, identifying multiple candidate effector genes. Our results reveal common target genes for these traits, potentially affecting core developmental pathways. Our atlas will enable future efforts to determine hypothalamic mechanisms influencing disease susceptibility.


Subject(s)
Gene Expression Regulation, Developmental , Gene Regulatory Networks , Human Embryonic Stem Cells/physiology , Hypothalamus/embryology , Neurons/physiology , Cell Differentiation/genetics , Cell Line , Chromosome Mapping , Genome-Wide Association Study , Humans , Hypothalamus/cytology , Multifactorial Inheritance , RNA-Seq , Regulatory Elements, Transcriptional/genetics
15.
Genes (Basel) ; 12(9)2021 09 18.
Article in English | MEDLINE | ID: mdl-34573423

ABSTRACT

We performed a genome-wide association study (GWAS) to identify genetic variation associated with common forms of idiopathic generalized epilepsy (GE) and focal epilepsy (FE). Using a cohort of 2220 patients and 14,448 controls, we searched for single nucleotide polymorphisms (SNPs) associated with GE, FE and both forms combined. We did not find any SNPs that reached genome-wide statistical significance (p ≤ 5 × 10-8) when comparing all cases to all controls, and few SNPs of interest comparing FE cases to controls. However, we document multiple linked SNPs in the PADI6-PADI4 genes that reach genome-wide significance and are associated with disease when comparing GE cases alone to controls. PADI genes encode enzymes that deiminate arginine to citrulline in molecular pathways related to epigenetic regulation of histones and autoantibody formation. Although epilepsy genetics and treatment are focused strongly on ion channel and neurotransmitter mechanisms, these results suggest that epigenetic control of gene expression and the formation of autoantibodies may also play roles in epileptogenesis.


Subject(s)
Epilepsy, Generalized/genetics , Polymorphism, Single Nucleotide , Protein-Arginine Deiminase Type 4/genetics , Protein-Arginine Deiminase Type 6/genetics , Black or African American/genetics , Case-Control Studies , Chromosomes, Human, Pair 1 , Epilepsies, Partial/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , White People/genetics
16.
Sci Rep ; 11(1): 16013, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362956

ABSTRACT

With polygenic risk score (PRS) for autoimmune type 1 diabetes (T1D), this study identified T1D cases with low T1D PRS and searched for susceptibility loci in these cases. Our hypothesis is that genetic effects (likely mediated by relatively rare genetic variants) of non-mainstream (or non-autoimmune) T1D might have been diluted in the previous studies on T1D cases in general. Two cohorts for the PRS modeling and testing respectively were included. The first cohort consisted of 3302 T1D cases and 6181 controls, and the independent second cohort consisted of 3297 T1D cases and 6169 controls. Cases with low T1D PRS were identified using PRSice-2 and compared to controls with low T1D PRS by genome-wide association (GWA) test. Thirteen novel genetic loci with high imputation quality (Quality Score r2 > 0.91) were identified of SNPs/SNVs associated with low PRS T1D at genome-wide significance (P ≤ 5.0 × E-08), in addition to 4 established T1D loci, 3 reported loci by our previous study, as well as 9 potential novel loci represented by rare SNVs, but with relatively low imputation quality (Quality Score r2 < 0.90). For the 13 novel loci, 9 regions have been reported of association with obesity related traits by previous GWA studies. Three loci encoding long intergenic non-protein coding RNAs (lncRNA), and 2 loci involved in N-linked glycosylation are also highlighted in this study.


Subject(s)
Autoimmune Diseases/physiopathology , Diabetes Mellitus, Type 1/genetics , Genetic Loci , Genetic Predisposition to Disease , Glucose Intolerance/physiopathology , Obesity/physiopathology , Polymorphism, Single Nucleotide , Adolescent , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/pathology , Female , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Male , Phenotype , Risk Factors , United States/epidemiology
17.
Commun Biol ; 4(1): 908, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34302048

ABSTRACT

Type 1 diabetes (T1D) patients with low genetic risk scores (GRS) may be non-autoimmune or autoimmune mediated by other genetic loci. The T1D-GRS2 provides us an opportunity to look into the genetic architecture of these patients. A total of 18,949 European individuals were included in this study, including 6599 T1D cases and 12,323 controls. 957 (14.5%) T1D patients were identified with low GRS (GRS < 8.43). The genome-wide association study on these patients identified 41 unreported loci. Two loci with common variants and 39 loci with rare variants were identified in this study. This study identified common SNPs associated with both low GRS T1D and expression levels of the interferon-α-induced MNDA gene, indicating the role of viral infection in T1D. Interestingly, 16 of the 41 unreported loci have been linked to autism spectrum disorder (ASD) by previous studies, suggesting that genes residing at these loci may underlie both T1D and autism.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease/epidemiology , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Diabetes Mellitus, Type 1/epidemiology , Europe/epidemiology , Female , Genetic Loci , Genetic Predisposition to Disease/genetics , Humans , Male , Risk Factors
19.
Int J Mol Sci ; 22(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809196

ABSTRACT

Deposition of amyloid ß (Aß) fibrils in the brain is a key pathologic hallmark of Alzheimer's disease. A class of polyphenolic biflavonoids is known to have anti-amyloidogenic effects by inhibiting aggregation of Aß and promoting disaggregation of Aß fibrils. In the present study, we further sought to investigate the structural basis of the Aß disaggregating activity of biflavonoids and their interactions at the atomic level. A thioflavin T (ThT) fluorescence assay revealed that amentoflavone-type biflavonoids promote disaggregation of Aß fibrils with varying potency due to specific structural differences. The computational analysis herein provides the first atomistic details for the mechanism of Aß disaggregation by biflavonoids. Molecular docking analysis showed that biflavonoids preferentially bind to the aromatic-rich, partially ordered N-termini of Aß fibril via the π-π interactions. Moreover, docking scores correlate well with the ThT EC50 values. Molecular dynamic simulations revealed that biflavonoids decrease the content of ß-sheet in Aß fibril in a structure-dependent manner. Hydrogen bond analysis further supported that the substitution of hydroxyl groups capable of hydrogen bond formation at two positions on the biflavonoid scaffold leads to significantly disaggregation of Aß fibrils. Taken together, our data indicate that biflavonoids promote disaggregation of Aß fibrils due to their ability to disrupt the fibril structure, suggesting biflavonoids as a lead class of compounds to develop a therapeutic agent for Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Benzothiazoles/pharmacology , Biflavonoids/pharmacology , Protein Aggregation, Pathological/drug therapy , Alzheimer Disease/pathology , Amyloid/antagonists & inhibitors , Amyloid/drug effects , Amyloid/ultrastructure , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/ultrastructure , Biflavonoids/chemistry , Brain/drug effects , Brain/pathology , Humans , Hydrogen Bonding/drug effects , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology
20.
Am J Hum Genet ; 108(4): 564-582, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33713608

ABSTRACT

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.


Subject(s)
Black People/genetics , Body Height/genetics , Genome-Wide Association Study , Africa/ethnology , Black or African American/genetics , Europe/ethnology , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...