Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Internet Res ; 23(3): e22219, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33600347

ABSTRACT

Coincident with the tsunami of COVID-19-related publications, there has been a surge of studies using real-world data, including those obtained from the electronic health record (EHR). Unfortunately, several of these high-profile publications were retracted because of concerns regarding the soundness and quality of the studies and the EHR data they purported to analyze. These retractions highlight that although a small community of EHR informatics experts can readily identify strengths and flaws in EHR-derived studies, many medical editorial teams and otherwise sophisticated medical readers lack the framework to fully critically appraise these studies. In addition, conventional statistical analyses cannot overcome the need for an understanding of the opportunities and limitations of EHR-derived studies. We distill here from the broader informatics literature six key considerations that are crucial for appraising studies utilizing EHR data: data completeness, data collection and handling (eg, transformation), data type (ie, codified, textual), robustness of methods against EHR variability (within and across institutions, countries, and time), transparency of data and analytic code, and the multidisciplinary approach. These considerations will inform researchers, clinicians, and other stakeholders as to the recommended best practices in reviewing manuscripts, grants, and other outputs from EHR-data derived studies, and thereby promote and foster rigor, quality, and reliability of this rapidly growing field.


Subject(s)
COVID-19/epidemiology , Data Collection/methods , Electronic Health Records , Data Collection/standards , Humans , Peer Review, Research/standards , Publishing/standards , Reproducibility of Results , SARS-CoV-2/isolation & purification
2.
J Am Med Inform Assoc ; 28(3): 427-443, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32805036

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. MATERIALS AND METHODS: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. RESULTS: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. CONCLUSIONS: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19.


Subject(s)
COVID-19 , Data Science/organization & administration , Information Dissemination , Intersectoral Collaboration , Computer Security , Data Analysis , Ethics Committees, Research , Government Regulation , Humans , National Institutes of Health (U.S.) , United States
3.
NPJ Digit Med ; 3: 109, 2020.
Article in English | MEDLINE | ID: mdl-32864472

ABSTRACT

We leveraged the largely untapped resource of electronic health record data to address critical clinical and epidemiological questions about Coronavirus Disease 2019 (COVID-19). To do this, we formed an international consortium (4CE) of 96 hospitals across five countries (www.covidclinical.net). Contributors utilized the Informatics for Integrating Biology and the Bedside (i2b2) or Observational Medical Outcomes Partnership (OMOP) platforms to map to a common data model. The group focused on temporal changes in key laboratory test values. Harmonized data were analyzed locally and converted to a shared aggregate form for rapid analysis and visualization of regional differences and global commonalities. Data covered 27,584 COVID-19 cases with 187,802 laboratory tests. Case counts and laboratory trajectories were concordant with existing literature. Laboratory tests at the time of diagnosis showed hospital-level differences equivalent to country-level variation across the consortium partners. Despite the limitations of decentralized data generation, we established a framework to capture the trajectory of COVID-19 disease in patients and their response to interventions.

4.
Thromb Res ; 133(2): 187-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24332063

ABSTRACT

Antiphospholipid syndrome (APS) is defined by the association of autoantibodies to certain phospholipid-binding proteins with arterial or venous thrombosis ('AT' or 'VT', respectively), and/or pregnancy-related morbidity (PM). Antiphospholipid antibodies (aPLA) promote activation of several cell types including monocytes, resulting in procoagulant tissue factor (TF) expression that may contribute to the vascular complications. Since TF synthesis by monocytes is frequently accompanied by release of TF-bearing microparticles, we hypothesized that plasma microparticle TF activity (MP-TF) may be elevated in APS patients and contribute to thrombosis and/or PM. Platelet-poor plasma specimens were obtained from 30 patients with definite APS and 72 patients with asymptomatic aPLA from the Antiphospholipid Syndrome Collaborative Registry (APSCORE). MP-TF was measured by an in-house factor Xa generation assay. The two groups were well matched for gender, age, ethnicity, proportions with underlying SLE, and aPLA profiles. MP-TF (median and (IQR)) in asymptomatic aPLA subjects was 0.09 pg/mL (0.05-0.14) compared to 0.13 pg/mL (0.10-0.17) in APS (p < 0.001). No differences in MP-TF levels were observed between APS subjects with PM, thrombosis, or PM+thrombosis. Similarly, among subjects with either APS or asymptomatic aPLA, MP-TF did not differ in the presence or absence of underlying SLE. Prospective studies will be required to determine if plasma MP-TF activity is causally related to thrombotic or gestational complications in APS.


Subject(s)
Antibodies, Antiphospholipid/blood , Antiphospholipid Syndrome/complications , Cell-Derived Microparticles/metabolism , Pregnancy Complications/blood , Thromboplastin/metabolism , Thrombosis/complications , Adult , Antiphospholipid Syndrome/blood , Antiphospholipid Syndrome/metabolism , Female , Humans , Male , Middle Aged , Pregnancy , Pregnancy Complications/metabolism , Thrombosis/blood , Thrombosis/metabolism
5.
J Acquir Immune Defic Syndr ; 63(3): 367-71, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23507662

ABSTRACT

Activation of coagulation pathways may contribute to risk for non-AIDS-related conditions among HIV-positive patients. Tissue factor (TF)-dependent procoagulant activity on circulating microparticles (MP-TF) in the plasma of 163 HIV-positive participants, both untreated and treated, with viral suppression was measured. MP-TF activity was 39% lower among treated versus untreated participants (P < 0.001), which persisted in adjusted models (-36%, P = 0.03). Among treated participants, MP-TF activity correlated modestly with D-dimer (r = 0.24, P = 0.01), von Willebrand factor (r = 0.36, P < 0.001), and interleukin-6 (r = 0.20, P = 0.04) levels. Future research should focus on mechanisms driving residual functional TF activity and whether these alterations have clinical consequences for non-AIDS-defining complications.


Subject(s)
Anti-HIV Agents/therapeutic use , Blood Coagulation/drug effects , HIV Infections/blood , HIV Infections/drug therapy , Inflammation/immunology , Thromboplastin/metabolism , Adult , Blood Coagulation Tests , C-Reactive Protein/analysis , Cell-Derived Microparticles , Female , Humans , Interleukin-6/blood , Male , Middle Aged , Thromboplastin/analysis , von Willebrand Factor/analysis
6.
Hepatology ; 58(1): 304-13, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23389887

ABSTRACT

UNLABELLED: Microparticles (MPs), membrane fragments of 0.1-1.0 µm, are derived from many cell types in response to systemic inflammation. Acute liver failure (ALF) is a prototypical syndrome of systemic inflammatory response syndrome (SIRS) associated with a procoagulant state. We hypothesized that patients with ALF develop increased procoagulant MPs in proportion to the severity of systemic complications and adverse outcome. Fifty patients with acute liver injury (ALI), 78% of whom also had hepatic encephalopathy (HE; ALF), were followed until day 21 after admission. MPs were characterized by Invitrox Sizing, Antigen Detection and Enumeration, a light-scattering technology that can enumerate MPs as small as 0.15 µm, and by flow cytometry. Procoagulant activity was assessed by a functional MP-tissue factor (MP-TF) assay. Sixteen patients (32%) died and 27 (54%) recovered without liver transplantation (LT). Total MPs (0.15-1.0 µm) were present in nearly 19-fold higher concentrations in ALI/ALF patients, compared to healthy controls (P < 0.0001). MP-TF assays revealed high procoagulant activity (9.05 ± 8.82 versus 0.24 ± 0.14 pg/mL in controls; P = 0.0008). MP concentrations (0.28-0.64 µm) were higher in patients with the SIRS and high-grade HE, and MPs in the 0.36-0.64-µm size range increased in direct proportion to SIRS severity (P < 0.001) and grade of HE (P < 0.002). Day 1 MPs (0.28-0.64 µm) correlated with laboratory predictors of death/LT (higher phosphate and creatinine; lower bicarbonate), and day 1 and 3 MPs were higher in patients who died or underwent LT, compared to spontaneous survivors (P ≤ 0.01). By flow cytometry, 87% of patients had circulating CD41(+) MPs, indicating platelet origin. CONCLUSION: Highly procoagulant MPs of specific size ranges are associated with the SIRS, systemic complications, and adverse outcome of ALI/ALF. MPs may contribute to the multiorgan system failure and high mortality of ALF.


Subject(s)
Cell-Derived Microparticles/metabolism , Hepatic Encephalopathy/blood , Liver Failure, Acute/complications , Systemic Inflammatory Response Syndrome/etiology , Adult , Female , Humans , Male , Middle Aged , Platelet Membrane Glycoprotein IIb/blood , Systemic Inflammatory Response Syndrome/blood , Thromboplastin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...