Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 69(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38286017

ABSTRACT

Objective. Gold nanorods (GNRs) have emerged as versatile nanoparticles with unique properties, holding promise in various modalities of cancer treatment through drug delivery and photothermal therapy. In the rapidly evolving field of nanoparticle radiosensitization (NPRS) for cancer therapy, this study assessed the potential of gold nanorods as radiosensitizing agents by quantifying the key features of NPRS, such as secondary electron emission and dose enhancement, using Monte Carlo simulations.Approach. Employing the TOPAS track structure code, we conducted a comprehensive evaluation of the radiosensitization behavior of spherical gold nanoparticles and gold nanorods. We systematically explored the impact of nanorod geometry (in particular size and aspect ratio) and orientation on secondary electron emission and deposited energy ratio, providing validated results against previously published simulations.Main results. Our findings demonstrate that gold nanorods exhibit comparable secondary electron emission to their spherical counterparts. Notably, nanorods with smaller surface-area-to-volume ratios (SA:V) and alignment with the incident photon beam proved to be more efficient radiosensitizing agents, showing superiority in emitted electron fluence. However, in the microscale, the deposited energy ratio (DER) was not markedly influenced by the SA:V of the nanorod. Additionally, our findings revealed that the geometry of gold nanoparticles has a more significant impact on the emission of M-shell Auger electrons (with energies below 3.5 keV) than on higher-energy electrons.Significance. This research investigated the radiosensitization properties of gold nanorods, positioning them as promising alternatives to the more conventionally studied spherical gold nanoparticles in the context of cancer research. With increasing interest in multimodal cancer therapy, our findings have the potential to contribute valuable insights into the perspective of gold nanorods as effective multipurpose agents for synergistic photothermal therapy and radiotherapy. Future directions may involve exploring alternative metallic nanorods as well as further optimizing the geometry and coating materials, opening new possibilities for more effective cancer treatments.


Subject(s)
Metal Nanoparticles , Nanotubes , Radiation-Sensitizing Agents , Gold/pharmacology , Gold/chemistry , Metal Nanoparticles/chemistry , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemistry , Computer Simulation
2.
Article in English | MEDLINE | ID: mdl-35206513

ABSTRACT

The emergence of online purchase platforms makes products containing radioactive materials more accessible to consumers. These products are gaining popularity and are widely available and easily accessible in the market today. This study examined how consumer's psychological factors affect their decision of purchasing products containing radioactive materials in the market. Based on the protective action decision model (PADM) and the heuristic-systematic model (HSM), this study proposed a model to add to the literature on consumer awareness of risky products. In particular, this study investigated which type of regulatory focus message (promotion-focused advertisement or prevention-focused advertisement) is significant in moderating the effects of radiation safety knowledge and product knowledge on risk perception when purchasing products containing radioactive materials. The relationship between consumers' risk perception and information seeking, which leads to the purchase intention of such products was also investigated. Advertisements with varying regulatory focus messages were randomly distributed to participants to determine whether consumers are more influenced by promotion-focused advertisement or prevention-focused advertisement to mitigate the risk of purchasing products containing radioactive materials. The results revealed that promotion-focused advertising messages evoked a positive effect on consumers' radiation safety knowledge and product knowledge toward risk perception. However, prevention-focused regulatory advertising messages did not moderate the relationships between both radiation safety knowledge and product knowledge on consumers' risk perception. This study offers guidelines for manufacturers, sellers, and marketers of products containing radioactive materials, and, importantly, for the government to devise strategies in designing effective social marketing advertisement for business, environmental and societal benefits.


Subject(s)
Consumer Behavior , Intention , Advertising , Commerce , Humans , Malaysia
3.
Article in English | MEDLINE | ID: mdl-34769689

ABSTRACT

A particular category of jewelry is one involving bracelets and necklaces that are deliberately made to contain naturally occurring radioactive material (NORM)-purveyors making unsubstantiated claims for health benefits from the release of negative ions. Conversely, within the bounds of the linear no-threshold model, long-term use presents a radiological risk to wearers. Evaluation is conducted herein of the radiological risk arising from wearing these products and gamma-ray spectrometry is used to determine the radioactivity levels and annual effective dose of 15 commercially available bracelets (samples B1 to B15) and five necklaces (samples N16 to N20). Various use scenarios are considered; a Geant4 Monte Carlo (Geant4 MC) simulation is also performed to validate the experimental results. The dose conversion coefficient for external radiation and skin equivalent doses were also evaluated. Among the necklaces, sample N16 showed the greatest levels of radioactivity, at 246 ± 35, 1682 ± 118, and 221 ± 40 Bq, for 238U, 232Th, and 40K, respectively. For the bracelets, for 238U and 232Th, sample B15 displayed the greatest level of radioactivity, at 146 ± 21 and 980 ± 71 Bq, respectively. N16 offered the greatest percentage concentrations of U and Th, with means of 0.073 ± 0.0002% and 1.51 ± 0.0015%, respectively, giving rise to an estimated annual effective dose exposure of 1.22 mSv, substantially in excess of the ICRP recommended limit of 1 mSv/year.


Subject(s)
Radiation Monitoring , Radioactivity , Radium , Soil Pollutants, Radioactive , Monte Carlo Method , Potassium Radioisotopes/analysis , Radiation Dosage , Radiography , Radium/analysis , Soil Pollutants, Radioactive/analysis , Spectrometry, Gamma , Thorium/analysis
4.
PLoS One ; 16(6): e0250528, 2021.
Article in English | MEDLINE | ID: mdl-34061865

ABSTRACT

Forming part of a study of radiological risk arising from use of radioactive consumer products, investigation is made of pendants containing naturally occurring radioactive material. Based on use of gamma-ray spectrometry and Monte Carlo (MC) simulations, the study investigates commercially available 'scalar energy pendants'. The doses from these have been simulated using MIRD5 mathematical phantoms, evaluation being made of dose conversion factors (DCFs) and organ dose. Metallic pendants code MP15 were found to contain the greatest activity, at 7043 ± 471 Bq from 232Th, while glass pendants code GP11 were presented the greatest 238U and 40K activity, at 1001 ± 172 and 687 ± 130 Bq respectively. MP15 pendants offered the greatest percentage concentrations of Th, Ce, U and Zr, with means of 25.6 ± 0.06, 5.6 ± 0.005, 1.03 ± 0.04 and 28.5 ± 0.08 respectively, giving rise to an effective dose of 2.8 mSv for a nominal wearing period of 2000 h. Accordingly, these products can give rise to annual doses in excess of the public limit of 1 mSv.


Subject(s)
Construction Materials , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage , Radioactivity , Spectrometry, Gamma
5.
Appl Radiat Isot ; 174: 109757, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33990033

ABSTRACT

This study analysed thermoluminescence (TL) glow curves of the polymer pencil lead graphite (PPLG) due to its potential applications in radiation dosimetry. The TL glow curves provide information on the physical parameters of the defects participating in luminescence process. The glow curves for different diameters PPLG samples were obtained with varying temperature from 50 to 300 °C, at a fixed heating rate of 10 °Cs-1. A number of methods (initial rise, peak shape and curve fitting) were used to fit the TL glow peaks of the PPLG samples obtained under photon dose of 200 Gy. From the fitted TL signals, the trap parameters such as the order of kinetics, the activation energy, the frequency factor, etc. for the individual peaks were numerically determined. The lifetimes of TL process were calculated assuming the first-order kinetics. The results are compared among the different methods adopted in this study. Implications about the possible results in glow curve deconvolution are discussed.

6.
Life (Basel) ; 11(4)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801699

ABSTRACT

Considering the probable health risks due to radioactivity input via drinking tea, the concentrations of 226Ra, 232Th,40K and 137Cs radionuclides in the soil and the corresponding tea leaves of a large tea plantation were measured using high purity germanium (HPGe) γ-ray spectrometry. Different layers of soil and fresh tea leaf samples were collected from the Udalia Tea Estate (UTE) in the Fatickchari area of Chittagong, Bangladesh. The mean concentrations (in Bq/kg) of radionuclides in the studied soil samples were found to be 34 ± 9 to 45 ± 3 for 226Ra, 50 ± 13 to 63 ± 5 for 232Th, 245 ± 30 to 635 ± 35 for 40K and 3 ± 1 to 10 ± 1 for 137Cs, while the respective values in the corresponding tea leaf samples were 3.6 ± 0.7 to 5.7 ± 1.0, 2.4 ± 0.5 to 5.8 ± 0.9, 132 ± 25 to 258 ± 29 and <0.4. The mean transfer factors for 226Ra, 232Th and 40K from soil to tea leaves were calculated to be 0.12, 0.08 and 0.46, respectively, the complete range being 1.1 × 10-2 to 1.0, in accordance with IAEA values. Additionally, the most popularly consumed tea brands available in the Bangladeshi market were also analyzed and, with the exception of 40K, were found to have similar concentrations to the fresh tea leaves collected from the UTE. The committed effective dose via the consumption of tea was estimated to be low in comparison with the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reference ingestion dose limit of 290 µSv/y. Current indicative tea consumption of 4 g/day/person shows an insignificant radiological risk to public health, while cumulative dietary exposures may not be entirely negligible, because the UNSCEAR reference dose limit is derived from total dietary exposures. This study suggests a periodic monitoring of radiation levels in tea leaves in seeking to ensure the safety of human health.

7.
Sci Rep ; 11(1): 7939, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846448

ABSTRACT

Preliminary study has been made of black human hair, carbon concentration of some 53%, a model in examining the potential of hair of the human head in retrospective and emergency biodosimetry applications, also offering effective atomic number near to that of water. The hair samples were exposed to [Formula: see text]Co gamma rays, delivering doses from 0 to 200 Gy. Structural alterations were observed, use being made of Raman and photoluminescence (PL) spectroscopy. Most prominent among the features observed in the first-order Raman spectra are the D and G peaks, appearing at 1370 [Formula: see text] and 1589 [Formula: see text] respectively, the intensity ratio [Formula: see text] indicating dose-dependent defects generation and annealing of structural alterations. The wavelengths of the PL absorption and emission peaks are found to be centred at [Formula: see text] nm and [Formula: see text] nm, respectively. The hair samples mean band gap energy ([Formula: see text]) post-irradiation was found to be [Formula: see text] eV, of the order of a semiconductor and approximately two times the [Formula: see text] of other carbon-rich materials reported via the same methodology.


Subject(s)
Gamma Rays , Hair/radiation effects , Luminescence , Spectrum Analysis, Raman , Elements , Female , Humans , Spectrometry, X-Ray Emission
8.
Sensors (Basel) ; 15(8): 20557-69, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26307987

ABSTRACT

Study has been undertaken of the thermoluminescence (TL) yield of various tailor-made flat cross-section 6 mol% Ge-doped silica fibers, differing only in respect of external dimensions. Key TL dosimetric characteristics have been investigated, including glow curves, dose response, sensitivity, fading and reproducibility. Using a (60)Co source, the samples were irradiated to doses within the range 1 to 10 Gy. Prior to irradiation, the flat fibers were sectioned into 6 mm lengths, weighed, and annealed at 400 °C for 1 h. TL readout was by means of a Harshaw Model 3500 TLD reader, with TLD-100 chips (LiF:Mg, Ti) used as a reference dosimeter to allow the relative response of the fibers to be evaluated. The fibers have been found to provide highly linear dose response and excellent reproducibility over the range of doses investigated, demonstrating high potential as TL-mode detectors in radiation medicine applications. Mass for mass, the results show the greatest TL yield to be provided by fibers of the smallest cross-section, analysis indicating this to be due to minimal light loss in transport of the TL through the bulk of the silica medium.


Subject(s)
Gamma Rays , Germanium/chemistry , Luminescence , Optical Fibers , Temperature , Dose-Response Relationship, Radiation , Reproducibility of Results , Thermoluminescent Dosimetry
9.
Appl Radiat Isot ; 82: 12-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23948307

ABSTRACT

Understanding the influence of co-dopants in the luminescence enhancement of carbonate glasses is the key issue in dosimetry. A series of borate glasses modified by lithium and potassium carbonate were synthesized by the melt-quenching method. The glass mixture activated with various concentrations of TiO2 and MgO was subjected to various doses of gamma-rays ((60)Co). The amorphous nature of the samples was confirmed by x-ray diffraction (XRD) spectra. The simple glowing curve of the glass doped with TiO2 features a peak at 230°C, whose intensity is maximal at 0.5 mol% of the dopant. The intensity of the glowing curve increases with the concentration of MgO added as a co-dopant up to 0.25 mol%, where it is two times higher than for the material without MgO thermoluminescence properties, including dose response, reproducibility, and fading were studied. The effective atomic number of the material was also determined. Kinetic parameters, such as kinetics order, activation energy, and frequency factor are estimated. The photoluminescence spectra of the titanium-doped glass consist of a prominent peaks at 480 nm when laser excitation at 650 nm is used. A three-fold photoluminescence enhancement and a blue shift of the peak were observed when 0.1% MgO was introduced. In addition, various physical parameters, such as ion concentration, polaron radius and internuclear distances were calculated. The mechanism for the thermoluminescence and photoluminescence enhancements are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...