Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Type of study
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39019074

ABSTRACT

Wines are complex mixtures of chemical compounds with broad and overlapping absorption and emission spectral features in the UV and visible spectral regions, making them challenging to study with conventional optical spectroscopic techniques. Multidimensional fluorescence spectroscopies correlate fluorescence spectra with other degrees of freedom, and have proven useful for studying complex molecular systems, offering a pathway for the analysis of wines utilising their inherent fluorescence. Here we employ steady-state excitation emission matrix (EEM) and time- resolved fluorescence spectral measurements to investigate representative commercial white and red wine samples and a fluorescent "model" wine base. Combining these multidimensional measurement methods provides information on the emission characteristics of the components that wines contain. This investigation illustrates the potential for multidimensional fluorescence techniques as diagnostic tools for the wine industry.

2.
Phys Chem Chem Phys ; 23(15): 9357-9364, 2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33885111

ABSTRACT

Diketopyrrolopyrrole (DPP) derivatives have been proposed for both singlet fission and energy upconversion as they meet the energetic requirements and exhibit superior photostability compared to many other chromophores. In this study, both time-resolved electronic and IR spectroscopy have been applied to investigate excited state relaxation processes competing with fission in dimers of DPP derivatives with varying linker structures. A charge-separated (CS) state is shown to be an important intermediate with dynamics that are both solvent and linker dependent. The CS state is found for a subset of the total population of excited molecules and it is proposed that CS state formation requires suitably aligned dimers within a broader distribution of conformations available in solution. No long-lived triplet signatures indicative of singlet fission were detected, with the CS state likely acting as an alternative relaxation pathway for the excitation energy. This study provides insight into the role of molecular conformation in determining excited state relaxation pathways in DPP dimer systems.

3.
ACS Appl Mater Interfaces ; 12(23): 25980-25990, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32419455

ABSTRACT

Layered perovskite films, composed of two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs), show improved stability compared to their conventional three-dimensional (3D) counterparts in perovskite solar cells (PSCs). However, 2D PSCs exhibit a lower power conversion efficiency (PCE), which has been attributed to compositional inhomogeneity and nonuniform alignment of the 2D perovskite phases. Methylammonium chloride (MACl) has been adopted as an additive to improve the PCE and the operational stability of 2D PSCs, although the role of MACl in performance enhancement is unclear. In this work, time- and spatially resolved fluorescence and absorption techniques have been applied to study the composition and charge carrier dynamics in MACl-doped BA2MA4Pb5I16 (⟨n⟩ = 5) layered perovskite films. The inhomogeneous phase orientation distribution in the direction orthogonal to the substrate for undoped layered perovskite films undergoes reorganization upon MACl doping. Based on structural and crystallographic analyses, it is revealed that MACl can facilitate the crystallization of small-n 2D perovskite phases at the cost of consuming an increased amount of BA cations. Consequently, an increase in the thickness of large-n 2D perovskite phases accompanies their enhanced perpendicular alignment ([101] crystalline orientation) to the substrate, which facilitates charge carrier transport and collection by electrodes. The defect passivation of the MACl-doped layered perovskite film provided by the small-n phase is also beneficial to the photovoltaic performance of the PSC device. A maximum PCE (∼14.3%) was achieved at 6 mol % MACl doping, with this optimum level influenced by the increased interfacial roughness of the layered perovskite film caused by the edges of small-n perovskite flakes emerging on the front surface.

4.
Chem Sci ; 11(13): 3523-3530, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-34109024

ABSTRACT

Optimizing interfacial contacts and thus electron transfer phenomena in heterogeneous electrocatalysts is an effective approach for enhancing electrocatalytic performance. Herein, we successfully synthesized ultrafine ß-Mo2C nanoparticles confined within hollow capsules of nitrogen-doped porous carbon (ß-Mo2C@NPCC) and found that the surface layer of molybdenum atoms was further oxidized to a single Mo-O surface layer, thus producing intimate O-Mo-C interfaces. An arsenal of complementary technologies, including XPS, atomic-resolution HAADF-STEM, and XAS analysis clearly reveals the existence of O-Mo-C interfaces for these surface-engineered ultrafine nanostructures. The ß-Mo2C@NPCC electrocatalyst exhibited excellent electrocatalytic activity for the hydrogen evolution reaction (HER) in water. Theoretical studies indicate that the highly accessible ultrathin O-Mo-C interfaces serving as the active sites are crucial to the HER performance and underpinned the outstanding electrocatalytic performance of ß-Mo2C@NPCC. This proof-of-concept study opens a new avenue for the fabrication of highly efficient catalysts for HER and other applications, whilst further demonstrating the importance of exposed interfaces and interfacial contacts in efficient electrocatalysis.

5.
RSC Adv ; 10(71): 43579-43584, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-35519665

ABSTRACT

Zero-dimensional (0D) quantum confinement can be achieved in perovskite materials by the confinement of electron and hole states to single PbX6 4- perovskite octahedra. In this work, 0D perovskite (Cs4PbBr6) micro-crystals were prepared by a simple thermally-assisted solution method and thoroughly characterized. The micro-crystals show a high level of crystallinity and a high photoluminescence quantum yield of 45%. The radiative recombination coefficient of the 0D perovskite micro-crystals, 1.5 × 10-8 s-1 cm3, is two orders of magnitude higher than that of typical three-dimensional perovskite and is likely a strong contributing factor to the high emission efficiency of 0D perovskite materials. Temperature dependent luminescence measurements provide insight into the role of thermally-activated trap states. Spatially resolved measurements on single 0D perovskite micro-crystals reveal uniform photoluminescence intensity and emission decay behaviour suggesting the solution-based fabrication method yields a high-quality and homogenous single-crystal material. Such uniform emission reflects the intrinsic 0D nature of the material, which may be beneficial to device applications.

6.
Nanoscale Adv ; 1(9): 3383-3387, 2019 Sep 11.
Article in English | MEDLINE | ID: mdl-36133561

ABSTRACT

This study presents a simple one-pot synthesis method to achieve few-layered and defective Mo(S,Se)2 and (Mo,W)S2 by using supercritical water with organic reducing agents from simple and less-toxic precursors. This synthesis process is expected to be suitable for preparing other various kinds of TMD solid solutions.

7.
Nanoscale ; 10(18): 8752-8762, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29708260

ABSTRACT

The synthesis of colloidal indium phosphide quantum dots (InP QDs) has always been plagued by difficulties arising from limited P3- sources. Being effectively restricted to the highly pyrophoric tris(trimethylsilyl) phosphine (TMS3P) creates complications for the average chemist and presents a significant risk for industrially scaled reactions. The adaptation of tris(dialkylamino) phosphines for these syntheses has garnered attention, as these new phosphines are much safer and can generate nanoparticles with competitive photoluminescence properties to those from (TMS)3P routes. Until now, the reaction mechanics of this precursor were elusive due to many experimental optimizations, such as the inclusion of a high concentration of zinc salts, being atypical of previous InP syntheses. Herein, we utilize density functional theory calculations to outline a logical reaction mechanism. The aminophosphine precursor is found to require activation by a zinc halide before undergoing a disproportionation reaction to self-reduce this P(iii) material to a P(-iii) source. We use this understanding to adapt this precursor for a two-pot nanoparticle synthesis in a noncoordinating solvent outside of glovebox conditions. This allowed us to generate spherical InP/ZnS nanoparticles possessing fluorescence quantum yields >55% and lifetimes as fast as 48 ns, with tunable emission according to varying zinc halide acidity. The development of high quality and efficient InP QDs with this safer aminophosphine in simple Schlenk environments will enable a broader range of researchers to synthesize these nontoxic materials for a variety of high-value applications.

8.
ACS Nano ; 12(5): 4594-4604, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29667838

ABSTRACT

Nanoparticles comprising three or more different metals are challenging to prepare. General methods that tackle this challenge are highly sought after as multicomponent metal nanoparticles display favorable properties in applications such as catalysis, biomedicine, and imaging. Herein, we report a practical and versatile approach for the synthesis of nanoparticles composed of up to four different metals. This method relies on the thermal decomposition of nanostructured composite materials assembled from platinum nanoparticles, a metal-organic framework (ZIF-8), and a tannic acid coordination polymer. The controlled integration of multiple metal cations (Ni, Co, Cu, Mn, Fe, and/or Tb) into the tannic acid shell of the precursor material dictates the composition of the final multicomponent metal nanoparticles. Upon thermolysis, the platinum nanoparticles seed the growth of the multicomponent metal nanoparticles via coalescence with the metallic constituents of the tannic acid coordination polymer. The nanoparticles are supported in the walls of hollow nitrogen-doped porous carbon capsules created by the decomposition of the organic components of the precursor. The capsules prevent sintering and detachment of the nanoparticles, and their porosity allows for efficient mass transport. To demonstrate the utility of producing a broad library of supported multicomponent metal nanoparticles, we tested their electrocatalytic performance toward the hydrogen evolution reaction and oxygen evolution reaction. We discovered functional relationships between the composition of the nanoparticles and their electrochemical activity and identified the PtNiCu and PtNiCuFe nanoparticles as particularly efficient catalysts. This highlights how to generate diverse libraries of multicomponent metal nanoparticles that can be synthesized and subsequently screened to identify high-performance materials for target applications.

9.
Mikrochim Acta ; 185(2): 128, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29594671

ABSTRACT

The authors describe the synthesis of water-soluble and fluorescent graphene oxide quantum dots via acid exfoliation of graphite nanoparticles. The resultant graphene oxide quantum dots (GoQDs) were then modified with folic acid. Folic acid receptors are overexpressed in cancer cells and hence can bind to functionalized graphene oxide quantum dots. On excitation at 305 nm, the GoQDs display green fluorescence with a peak wavelength at ~520 nm. The modified GoQDs are non-toxic to macrophage cells even after prolonged exposure and high concentrations. Fluorescence lifetime imaging and multiphoton microscopy was used (in combination) to image HeCaT cells exposed to GoQDs, resulting in a superior method for bioimaging. Graphical abstract Schematic representation of graphene oxide quantum dots, folic acid modified graphene oxide quantum dots (red), and the use of fluorescence lifetime to discriminate against green auto-fluorescence of HeCaT cells.


Subject(s)
Folic Acid/chemistry , Graphite/chemistry , Neoplasms/diagnostic imaging , Optical Imaging/methods , Quantum Dots/chemistry , Cell Line, Tumor , Folate Receptors, GPI-Anchored/analysis , Folate Receptors, GPI-Anchored/metabolism , Folic Acid/metabolism , Humans , Microscopy, Fluorescence, Multiphoton/methods , Neoplasms/pathology
10.
J Am Chem Soc ; 138(36): 11872-81, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27575666

ABSTRACT

We report a new methodology for producing monometallic or bimetallic nanoparticles confined within hollow nitrogen-doped porous carbon capsules. The capsules are derived from metal-organic framework (MOF) crystals that are coated with a shell of a secondary material comprising either a metal-tannic acid coordination polymer or a resorcinol-formaldehyde polymer. Platinum nanoparticles are optionally sandwiched between the MOF core and the shell. Pyrolysis of the MOF-shell composites produces hollow capsules of porous nitrogen-doped carbon that bear either monometallic (Pt, Co, and Ni) or alloyed (PtCo and PtNi) metal nanoparticles. The Co and Ni components of the bimetallic nanoparticles are derived from the shell surrounding the MOF crystals. The hollow capsules prevent sintering and detachment of the nanoparticles, and their porous walls allow for efficient mass transport. Alloyed PtCo nanoparticles embedded in the capsule walls are highly active, selective, and recyclable catalysts for the hydrogenation of nitroarenes to anilines.

11.
PLoS One ; 11(5): e0155718, 2016.
Article in English | MEDLINE | ID: mdl-27182701

ABSTRACT

Complex scientific data is becoming the norm, many disciplines are growing immensely data-rich, and higher-dimensional measurements are performed to resolve complex relationships between parameters. Inherently multi-dimensional measurements can directly provide information on both the distributions of individual parameters and the relationships between them, such as in nuclear magnetic resonance and optical spectroscopy. However, when data originates from different measurements and comes in different forms, resolving parameter relationships is a matter of data analysis rather than experiment. We present a method for resolving relationships between parameters that are distributed individually and also correlated. In two case studies, we model the relationships between diameter and luminescence properties of quantum dots and the relationship between molecular weight and diffusion coefficient for polymers. Although it is expected that resolving complicated correlated relationships require inherently multi-dimensional measurements, our method constitutes a useful contribution to the modelling of quantitative relationships between correlated parameters and measurements. We emphasise the general applicability of the method in fields where heterogeneity and complex distributions of parameters are obstacles to scientific insight.


Subject(s)
Data Mining/methods , Models, Statistical , Algorithms , Computer Simulation
12.
ACS Appl Mater Interfaces ; 7(50): 27755-64, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26629977

ABSTRACT

We demonstrate microwave-induced heating of gold nanoparticles and nanorods. An appreciably higher and concentration-dependent microwave-induced heating rate was observed with aqueous dispersions of the nanomaterials as opposed to pure water and other controls. Grafted with the thermoresponsive polymer poly(N-isopropylacrylamide), these gold nanomaterials react to microwave-induced heating with a conformational change in the polymer shell, leading to particle aggregation. We subsequently covalently immobilize concanavalin A (Con A) on the thermoresponsive gold nanoparticles. Con A is a bioreceptor commonly used in bacterial sensors because of its affinity for carbohydrates on bacterial cell surfaces. The microwave-induced thermal transitions of the polymer reversibly switch on and off the display of Con A on the particle surface and hence the interactions of the nanomaterials with carbohydrate-functionalized surfaces. This effect was determined using linear sweep voltammetry on a methyl-α-d-mannopyranoside-functionalized electrode.


Subject(s)
Acrylic Resins/chemistry , Concanavalin A/chemistry , Metal Nanoparticles/chemistry , Acrylic Resins/chemical synthesis , Concanavalin A/chemical synthesis , Gold/chemistry , Microwaves , Particle Size , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...