Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Am J Physiol Heart Circ Physiol ; 326(5): H1204-H1218, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38363214

ABSTRACT

Sustained hemodynamic pressure overload (PO) produced by murine transverse aortic constriction (TAC) causes myocardial fibrosis; removal of TAC (unTAC) returns left ventricle (LV) hemodynamic load to normal and results in significant, but incomplete regression of myocardial fibrosis. However, the cellular mechanisms that result in these outcomes have not been defined. The objective was to determine temporal changes in myocardial macrophage phenotype in TAC and unTAC and determine whether macrophage depletion alters collagen degradation after unTAC. Myocardial macrophage abundance and phenotype were assessed by immunohistochemistry, flow cytometry, and gene expression by RT-PCR in control (non-TAC), 2 wk, 4 wk TAC, and 2 wk, 4 wk, and 6 wk unTAC. Myocardial cytokine profiles and collagen-degrading enzymes were determined by immunoassay and immunoblots. Initial collagen degradation was detected with collagen-hybridizing peptide (CHP). At unTAC, macrophages were depleted with clodronate liposomes, and endpoints were measured at 2 wk unTAC. Macrophage number had a defined temporal pattern: increased in 2 wk and 4 wk TAC, followed by increases at 2 wk unTAC (over 4 wk TAC) that then decreased at 4 wk and 6 wk unTAC. At 2 wk unTAC, macrophage area was significantly increased and was regionally associated with CHP reactivity. Cytokine profiles in unTAC reflected a proinflammatory milieu versus the TAC-induced profibrotic milieu. Single-cell sequencing analysis of 2 wk TAC versus 2 and 6 wk unTAC revealed distinct macrophage gene expression profiles at each time point demonstrating unique macrophage populations in unTAC versus TAC myocardium. Clodronate liposome depletion at unTAC reduced CHP reactivity and decreased cathepsin K and proMMP2. We conclude that temporal changes in number and phenotype of macrophages play a critical role in both TAC-induced development and unTAC-mediated partial, but incomplete, regression of myocardial fibrosis.NEW & NOTEWORTHY Our novel findings highlight the dynamic changes in myocardial macrophage populations that occur in response to PO and after alleviation of PO. Our data demonstrated, for the first time, a potential benefit of macrophages in contributing to collagen degradation and the partial regression of interstitial fibrosis following normalization of hemodynamic load.


Subject(s)
Collagen , Fibrosis , Macrophages , Mice, Inbred C57BL , Myocardium , Animals , Macrophages/metabolism , Macrophages/pathology , Myocardium/pathology , Myocardium/metabolism , Male , Mice , Collagen/metabolism , Disease Models, Animal , Ventricular Function, Left , Cytokines/metabolism , Ventricular Pressure , Ventricular Remodeling , Phenotype
2.
Bioact Mater ; 31: 463-474, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37701451

ABSTRACT

Human induced pluripotent stem cell derived cardiac fibroblasts (hiPSC-CFs) play a critical role in modeling human cardiovascular diseases in vitro. However, current culture substrates used for hiPSC-CF differentiation and expansion, such as Matrigel and tissue culture plastic (TCPs), are tissue mismatched and may provide pathogenic cues. Here, we report that hiPSC-CFs differentiated on Matrigel and expanded on tissue culture plastic (M-TCP-iCFs) exhibit transcriptomic hallmarks of activated fibroblasts limiting their translational potential. To alleviate pathogenic activation of hiPSC-CFs, we utilized decellularized extracellular matrix derived from porcine heart extracellular matrix (HEM) to provide a biomimetic substrate for improving hiPSC-CF phenotypes. We show that hiPSC-CFs differentiated and expanded on HEM (HEM-iCFs) exhibited reduced expression of hallmark activated fibroblast markers versus M-TCP-iCFs while retaining their cardiac fibroblast phenotype. HEM-iCFs also maintained a reduction in expression of hallmark genes associated with pathogenic fibroblasts when seeded onto TCPs. Further, HEM-iCFs more homogenously integrated into an hiPSC-derived cardiac organoid model, resulting in improved cardiomyocyte sarcomere development. In conclusion, HEM provides an improved substrate for the differentiation and propagation of hiPSC-CFs for disease modeling.

4.
Circ Heart Fail ; 16(8): e010395, 2023 08.
Article in English | MEDLINE | ID: mdl-37582166

ABSTRACT

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is increasingly prevalent and has few treatments. The molecular mechanisms and resultant signaling pathways that underlie the development of HFpEF are poorly defined. It has been proposed that activation of proinflammatory pathways plays a role in the development of cardiac fibrosis. The signature of gene expression (transcriptome) of previously validated left ventricular biopsies obtained from patients with HFpEF and matched referent controls allows for an unbiased assessment of proinflammatory and profibrotic signaling pathways and genes. METHODS: Epicardial left ventricular biopsies from stringently selected HFpEF patients (HFpEF, n=16) and referent control patients (CTR, n=14) were obtained during aortocoronary bypass surgery. The subepicardial myocardium was flash-frozen to build a repository that was parallel-processed for RNA sequencing to allow for an unsupervised in-depth comparison of the left ventricular transcriptome. RESULTS: The average patient age was 67±10 years. When compared with controls, patients with HFpEF were hypertensive with a higher body mass index (kg/m2: 30±5 versus 37±6; P<0.01) and elevated NT-proBNP levels (pg/mL: 155 [89-328] versus 1554 [888-2178]; P<0.001). The transcriptome analysis revealed differential expression of 477 genes many of which were involved in profibrotic pathways including extracellular matrix production and posttranslational modification but no proinflammatory signature. CONCLUSIONS: The transcriptome analysis of left ventricular myocardial samples from patients with HFpEF confirms an overabundant extracellular matrix gene expression, the basis of myocardial fibrosis, without a signature of activated proinflammatory pathways or genes.


Subject(s)
Cardiomyopathies , Heart Failure , Humans , Middle Aged , Aged , Heart Failure/diagnosis , Heart Failure/genetics , Heart Failure/metabolism , Stroke Volume/physiology , Myocardium/pathology , Heart Ventricles , Fibrosis , Gene Expression , Ventricular Function, Left/genetics
5.
J Biomech ; 147: 111458, 2023 01.
Article in English | MEDLINE | ID: mdl-36682211

ABSTRACT

Cardiac fibrosis is a key contributor to the onset and progression of heart failure and occurs from extracellular matrix accumulation via activated cardiac fibroblasts. Cardiac fibroblasts activate in response to mechanical stress and have been studied in the past by applying forces and deformations to three-dimensional, cell-seeded gels and tissue constructs in vitro. Unfortunately, previous stretching platforms have traditionally not enabled mechanical property assessment to be performed with an efficient throughput, thereby limiting the full potential of in vitro mechanobiology studies. We have developed a novel in vitro platform to study cell-populated tissue constructs under dynamic mechanical stimulation while also performing repeatable, non-destructive stress-strain tests in living constructs. Additionally, this platform can perform these tests across all constructs in a multi-well plate simultaneously, providing exciting potential for direct, functional readouts in future screening applications. In our pilot application, we showed that cyclically stretching cell-populated tissue constructs composed of murine cardiac fibroblasts within a 3D fibrin matrix leads to collagen accumulation and increased tissue stiffness over a three-day time course. Results of this study validate our platform's ability to apply mechanical loads to tissues while performing live mechanical analyses to observe cell-mediated tissue remodeling.


Subject(s)
Collagen , Tissue Engineering , Animals , Mice , Bioreactors , Cells, Cultured , Extracellular Matrix , Fibroblasts , Stress, Mechanical , Tissue Engineering/methods , Heart Failure
7.
Am J Physiol Heart Circ Physiol ; 323(1): H165-H175, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35657618

ABSTRACT

Left ventricular pressure overload (LVPO) can develop from antecedent diseases such as aortic valve stenosis and systemic hypertension and is characterized by accumulation of myocardial extracellular matrix (ECM). Evidence from patient and animal models supports limited reductions in ECM following alleviation of PO, however, mechanisms that control the extent and timing of ECM regression are undefined. LVPO, induced by 4 wk of transverse aortic constriction (TAC) in mice, was alleviated by removal of the band (unTAC). Cardiomyocyte cross-sectional area, collagen volume fraction (CVF), myocardial stiffness, and collagen degradation were assessed for: control, 2-wk TAC, 4-wk TAC, 4-wk TAC + 2-wk unTAC, 4-wk TAC + 4-wk unTAC, and 4-wk TAC + 6-wk unTAC. When compared with 4-wk TAC, 2-wk unTAC resulted in increased reactivity of collagen hybridizing peptide (CHP) (representing initiation of collagen degradation), increased levels of collagenases and gelatinases, decreased levels of collagen cross-linking enzymes, but no change in CVF. When compared with 2-wk unTAC, 4-wk unTAC demonstrated decreased CVF, which did not decline to control values. At 4-wk and 6-wk unTAC, CHP reactivity and mediators of ECM degradation were reduced versus 2-wk unTAC, whereas levels of tissue inhibitor of metalloproteinase (TIMP)-1 increased. ECM homeostasis changed in a time-dependent manner after removal of LVPO and is characterized by early increases in collagen degradation, followed by a later dampening of this process. Tempered ECM degradation with time is predicted to contribute to the finding that normalization of hemodynamic overload alone does not completely regress myocardial fibrosis.NEW & NOTEWORTHY In this study, a murine model demonstrated persistent interstitial fibrosis and myocardial stiffness following alleviation of pressure overload.


Subject(s)
Collagen , Myocardium , Animals , Collagen/metabolism , Disease Models, Animal , Fibrosis , Humans , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Ventricular Pressure , Ventricular Remodeling
8.
Am J Physiol Heart Circ Physiol ; 322(5): H798-H805, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35275763

ABSTRACT

Arterial hypertension can lead to structural changes within the heart including left ventricular hypertrophy (LVH) and eventually heart failure with preserved ejection fraction (HFpEF). The initial diagnosis of HFpEF is costly and generally based on later stage remodeling; thus, improved predictive diagnostic tools offer potential clinical benefit. Recent work has shown predictive value of multibiomarker plasma panels for the classification of patients with LVH and HFpEF. We hypothesized that machine learning algorithms could substantially improve the predictive value of circulating plasma biomarkers by leveraging more sophisticated statistical approaches. In this work, we developed an ensemble classification algorithm for the diagnosis of HFpEF within a population of 480 individuals including patients with HFpEF, patients with LVH, and referent control patients. Algorithms showed strong diagnostic performance with receiver-operating-characteristic curve (ROC) areas of 0.92 for identifying patients with LVH and 0.90 for identifying patients with HFpEF using demographic information, plasma biomarkers related to extracellular matrix remodeling, and echocardiogram data. More impressively, the ensemble algorithm produced an ROC area of 0.88 for HFpEF diagnosis using only demographic and plasma panel data. Our findings demonstrate that machine learning-based classification algorithms show promise as a noninvasive diagnostic tool for HFpEF, while also suggesting priority biomarkers for future mechanistic studies to elucidate more specific regulatory roles.NEW & NOTEWORTHY Machine learning algorithms correctly classified patients with heart failure with preserved ejection fraction with over 90% area under receiver-operating-characteristic curves. Classifications using multidomain features (demographics and circulating biomarkers and echo-based ventricle metrics) proved more accurate than previous studies using single-domain features alone. Excitingly, HFpEF diagnoses were generally accurate even without echo-based measurements, demonstrating that such algorithms could provide an early screening tool using blood-based measurements before sophisticated imaging.


Subject(s)
Heart Failure , Biomarkers , Humans , Hypertrophy, Left Ventricular , Machine Learning , Stroke Volume , Ventricular Function, Left
9.
PLoS One ; 17(1): e0262479, 2022.
Article in English | MEDLINE | ID: mdl-35015787

ABSTRACT

Heart failure is a leading cause of hospitalizations and mortality worldwide. Heart failure with a preserved ejection fraction (HFpEF) represents a significant clinical challenge due to the lack of available treatment modalities for patients diagnosed with HFpEF. One symptom of HFpEF is impaired diastolic function that is associated with increases in left ventricular stiffness. Increases in myocardial fibrillar collagen content is one factor contributing to increases in myocardial stiffness. Cardiac fibroblasts are the primary cell type that produce fibrillar collagen in the heart. However, relatively little is known regarding phenotypic changes in cardiac fibroblasts in HFpEF myocardium. In the current study, cardiac fibroblasts were established from left ventricular epicardial biopsies obtained from patients undergoing cardiovascular interventions and divided into three categories: Referent control, hypertension without a heart failure designation (HTN (-) HFpEF), and hypertension with heart failure (HTN (+) HFpEF). Biopsies were evaluated for cardiac myocyte cross-sectional area (CSA) and collagen volume fraction. Primary fibroblast cultures were assessed for differences in proliferation and protein expression of collagen I, Membrane Type 1-Matrix Metalloproteinase (MT1-MMP), and α smooth muscle actin (αSMA). Biopsies from HTN (-) HFpEF and HTN (+) HFpEF exhibited increases in myocyte CSA over referent control although only HTN (+) HFpEF exhibited significant increases in fibrillar collagen content. No significant changes in proliferation or αSMA was detected in HTN (-) HFpEF or HTN (+) HFpEF cultures versus referent control. Significant increases in production of collagen I was detected in HF (-) HFpEF fibroblasts, whereas significant decreases in MT1-MMP levels were measured in HTN (+) HFpEF cells. We conclude that epicardial biopsies provide a viable source for primary fibroblast cultures and that phenotypic differences are demonstrated by HTN (-) HFpEF and HTN (+) HFpEF cells versus referent control.


Subject(s)
Biomarkers/metabolism , Fibroblasts/pathology , Fibrosis/pathology , Heart Failure/pathology , Heart Ventricles/pathology , Hypertension/physiopathology , Myocardium/pathology , Aged , Case-Control Studies , Cell Proliferation , Cells, Cultured , Female , Fibroblasts/metabolism , Fibrosis/metabolism , Heart Failure/metabolism , Heart Ventricles/metabolism , Humans , Male , Middle Aged , Myocardium/metabolism , Prognosis
10.
Biomolecules ; 12(1)2021 12 22.
Article in English | MEDLINE | ID: mdl-35053159

ABSTRACT

During homeostasis, immune cells perform daily housekeeping functions to maintain heart health by acting as sentinels for tissue damage and foreign particles. Resident immune cells compose 5% of the cellular population in healthy human ventricular tissue. In response to injury, there is an increase in inflammation within the heart due to the influx of immune cells. Some of the most common immune cells recruited to the heart are macrophages, dendritic cells, neutrophils, and T-cells. In this review, we will discuss what is known about cardiac immune cell heterogeneity during homeostasis, how these cell populations change in response to a pathology such as myocardial infarction or pressure overload, and what stimuli are regulating these processes. In addition, we will summarize technologies used to evaluate cell heterogeneity in models of cardiovascular disease.


Subject(s)
Macrophages/immunology , Models, Cardiovascular , Myocardial Infarction/immunology , Myocardium/immunology , Animals , Humans , Inflammation/immunology
11.
Am J Physiol Lung Cell Mol Physiol ; 320(1): L29-L40, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33026236

ABSTRACT

Pulmonary fibrosis is one of the important causes of morbidity and mortality in fibroproliferative disorders such as systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF). Lysyl oxidase (LOX) is a copper-dependent amine oxidase whose primary function is the covalent crosslinking of collagens in the extracellular matrix (ECM). We investigated the role of LOX in the pathophysiology of SSc. LOX mRNA and protein levels were increased in lung fibroblasts of SSc patients compared with healthy controls and IPF patients. In vivo, bleomycin induced LOX mRNA expression in lung tissues, and LOX activity increased in the circulation of mice with pulmonary fibrosis, suggesting that circulating LOX parallels levels in lung tissues. Circulating levels of LOX were reduced upon amelioration of fibrosis with an antifibrotic peptide. LOX induced ECM production at the transcriptional level in lung fibroblasts, human lungs, and human skin maintained in organ culture. In vivo, LOX synergistically exacerbated fibrosis in bleomycin-treated mice. Further, LOX increased the production of interleukin (IL)-6, and the increase was mediated by LOX-induced c-Fos expression, the nuclear localization of c-Fos, and its engagement with the IL-6 promoter region. Our findings demonstrate that LOX expression and activity correlate with fibrosis in vitro, ex vivo, and in vivo. LOX induced ECM production via upregulation of IL-6 and nuclear localization of c-Fos. Thus, LOX has a direct pathogenic role in SSc-associated fibrosis that is independent of its crosslinking function. Our findings also suggest that measuring circulating LOX levels and activity can be used for monitoring response to antifibrotic therapy.


Subject(s)
Extracellular Matrix/pathology , Lung/pathology , Protein-Lysine 6-Oxidase/metabolism , Pulmonary Fibrosis/pathology , Scleroderma, Systemic/pathology , Animals , Antibiotics, Antineoplastic/toxicity , Bleomycin/toxicity , Case-Control Studies , Extracellular Matrix/enzymology , Fibroblasts/enzymology , Fibroblasts/pathology , Humans , Interleukin-6/metabolism , Lung/enzymology , Male , Mice , Mice, Inbred C57BL , Protein-Lysine 6-Oxidase/genetics , Pulmonary Fibrosis/enzymology , Pulmonary Fibrosis/etiology , Scleroderma, Systemic/enzymology , Scleroderma, Systemic/etiology
12.
Am J Physiol Heart Circ Physiol ; 320(2): H604-H612, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33306449

ABSTRACT

In human heart failure and in murine hearts with left-ventricular pressure overload (LVPO), increases in fibrosis are associated with increases in myocardial stiffness. Secreted protein acidic and rich in cysteine (SPARC) is shown to be necessary for both cardiac fibrosis and increases in myocardial stiffness in response to LVPO; however, cellular sources of cardiac SPARC are incompletely defined. Irradiation and bone marrow transfer were undertaken to test the hypothesis that SPARC expression by bone marrow-derived cells is an important mediator of fibrosis in LVPO. In recipient SPARC-null mice transplanted with donor wild-type (WT) bone marrow and subjected to LVPO, levels of fibrosis similar to that of WT mice were found despite the lack of SPARC expression by resident cells. In recipient WT mice with donor SPARC-null bone marrow, significantly less fibrosis versus that of WT mice was found despite the expression of SPARC by resident cells. Increases in myocardial stiffness followed a similar pattern to that of collagen deposition. Myocardial macrophages were significantly reduced in SPARC-null mice with LVPO versus that of WT mice. Recipient SPARC-null mice transplanted with donor WT bone marrow exhibited an increase in cardiac macrophages versus that of SPARC-null LVPO and donor WT mice with recipient SPARC-null bone marrow. Expression of vascular cellular adhesion molecule (VCAM), a previously identified binding partner of SPARC, was assessed in all groups and with the exception of WT mice, increases in VCAM immunoreactivity with LVPO were observed. However, no differences in VCAM expression between bone marrow transplant groups were noted. In conclusion, SPARC expression by bone marrow-derived cells was critical for fibrotic deposition of collagen and influenced the expansion of myocardial macrophages in response to LVPO.NEW & NOTEWORTHY Myocardial fibrosis and the resultant increases in LV and myocardial stiffness represent pivotal consequences of chronic pressure overload (PO). In this study, a murine model of cardiac fibrosis induced by PO was used to demonstrate a critical function of SPARC in bone marrow-derived cells that drives cardiac fibrosis and increases in cardiac macrophages.


Subject(s)
Blood Pressure , Cardiomegaly/metabolism , Myocardium/metabolism , Osteonectin/metabolism , Animals , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Fibrillar Collagens/metabolism , Fibrosis , Macrophages/pathology , Mice , Mice, Inbred C57BL , Myocardium/pathology , Osteonectin/genetics , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism
13.
Cell Signal ; 79: 109889, 2021 03.
Article in English | MEDLINE | ID: mdl-33347984

ABSTRACT

Extracellular matrix (ECM) remodeling occurs in response to various cardiac insults including infarction, pressure overload and dilated myopathies. Each type of remodeling necessitates distinct types of ECM turnover and deposition yet an increase in myocardial fibrillar collagen content is appreciated as a contributing feature to cardiac dysfunction in each of these pathologies. In addition, aging, is also associated with increases in cardiac collagen content. The importance of characterizing differences in ECM composition and processes used by cardiac fibroblasts in the assembly of fibrotic collagen accumulation is critical for the design of strategies to reduce and ultimately regress cardiac fibrosis. Collagen cross-linking is one factor that influences collagen deposition and insolubility with direct implications for tissue properties such as stiffness. In this review, three different types of collagen cross-links shown to be important in cardiac fibrosis will be discussed; those catalyzed by lysyl oxidases, those catalyzed by transglutaminases, and those that result from non-enzymatic modification by the addition of advanced glycation end products. Insight into cellular mechanisms that govern collagen cross-linking in the myocardium will provide novel pathways for exploring new treatments to treat diseases associated with cardiac fibrosis.


Subject(s)
Collagen/metabolism , Extracellular Matrix/metabolism , Heart Diseases/metabolism , Myocardium/metabolism , Animals , Extracellular Matrix/pathology , Fibrosis , Heart Diseases/pathology , Humans , Myocardium/pathology
14.
Am J Physiol Heart Circ Physiol ; 319(2): H331-H340, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32589444

ABSTRACT

Mechanisms that contribute to myocardial fibrosis, particularly in response to left ventricular pressure overload (LVPO), remain poorly defined. To test the hypothesis that a myocardial-specific profile of secreted factors is produced in response to PO, levels of 44 factors implicated in immune cell recruitment and function were assessed in a murine model of cardiac hypertrophy and compared with levels produced in a model of pulmonary fibrosis (PF). Mice subjected to PO were assessed at 1 and 4 wk. Protein from plasma, LV, lungs, and kidneys were analyzed by specific protein array analysis in parallel with protein from mice subjected to silica-instilled PF. Of the 44 factors assessed, 13 proteins were elevated in 1-wk PO myocardium, whereas 18 proteins were found increased in fibrotic lung. Eight of those increased in 1-wk LVPO were not found to be increased in fibrotic lungs (CCL-11, CCL-12, CCL-17, CCL-19, CCL-21, CCL-22, IL-16, and VEGF). Additionally, six factors were increased in plasma of 1-wk LVPO in the absence of increases in myocardial levels. In contrast, in mice with PF, no factors were found increased in plasma that were not elevated in lung tissue. Of those factors increased at 1 wk, only TIMP-1 remained elevated at 4 wk of LVPO. Immunohistochemistry of myocardial vasculature at 1 and 4 wk revealed similar amounts of total vasculature; however, evidence of activated endothelium was observed at 1 wk and, to a lesser extent, at 4 wk LVPO. In conclusion, PO myocardium generated a unique signature of cytokine expression versus that of fibrotic lung.NEW & NOTEWORTHY Myocardial fibrosis and the resultant increases in myocardial stiffness represent pivotal consequences of chronic pressure overload (PO). In this study, cytokine profiles produced in a murine model of cardiac fibrosis induced by PO were compared with those produced in response to silica-induced lung fibrosis. A unique profile of cardiac tissue-specific and plasma-derived factors generated in response to PO are reported.


Subject(s)
Cytokines/blood , Hypertrophy, Left Ventricular/metabolism , Inflammation Mediators/blood , Lung/metabolism , Myocardium/metabolism , Pulmonary Fibrosis/metabolism , Ventricular Function, Left , Ventricular Remodeling , Animals , Disease Models, Animal , Female , Fibrosis , Hypertrophy, Left Ventricular/pathology , Hypertrophy, Left Ventricular/physiopathology , Lung/pathology , Male , Mice, Inbred C57BL , Myocardium/pathology , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/physiopathology
15.
J Card Fail ; 26(10): 876-884, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32446948

ABSTRACT

Heart failure (HF) has traditionally been defined by symptoms of fluid accumulation and poor perfusion, but it is now recognized that specific HF classifications hold prognostic and therapeutic relevance. Specifically, HF with reduced ejection fraction is characterized by reduced left ventricular systolic pump function and dilation and HF with preserved ejection fraction is characterized primarily by abnormal left ventricular filling (diastolic failure) with relatively preserved left ventricular systolic function. These forms of HF are distributed equally among patients with HF and likely require distinctly different strategies to mitigate the morbidity, mortality, and medical resource utilization of this disease. In particular, HF is a significant medical issue within the US Department of Veterans Affairs (VA) hospital system and constitutes a major translational research priority for the VA. Because a common underpinning of both HF with reduced ejection fraction and HF with preserved ejection fraction seems to be changes in the structure and function of the myocardial extracellular matrix, a conference was convened sponsored by the VA, entitled, "Targeting Myocardial Fibrosis in Heart Failure" to explore the extracellular matrix as a potential therapeutic target and to propose specific research directions. The conference was conceptually framed around the hypothesis that although HF with reduced ejection fraction and HF with preserved ejection fraction clearly have distinct mechanisms, they may share modifiable pathways and biological mediators in common. Inflammation and extracellular matrix were identified as major converging themes. A summary of our discussion on unmet challenges and possible solutions to move the field forward, as well as recommendations for future research opportunities, are provided.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Diastole , Fibrosis , Heart Failure/epidemiology , Heart Failure/therapy , Humans , Stroke Volume , Ventricular Function, Left
16.
Matrix Biol ; 91-92: 167-175, 2020 09.
Article in English | MEDLINE | ID: mdl-32438054

ABSTRACT

Inflammation contributes to the development of heart failure (HF) through multiple mechanisms including regulating extracellular matrix (ECM) degradation and deposition. Interactions between cells in the myocardium orchestrates the magnitude and duration of inflammatory cell recruitment and ECM remodeling events associated with HF. More recently, studies have shown T-cells have signficant roles in post-MI wound healing. T-cell biology in HF illustrates the complexity of cross-talk between inflammatory cell types and resident fibroblasts. This review will focus on T-cell recruitment to the myocardium and T-cell specific factors that might influence cardiac wound healing and fibrosis in the heart with consideration of age and sex as important factors in T-cell activity.


Subject(s)
Endomyocardial Fibrosis/immunology , Extracellular Matrix/immunology , Fibroblasts/immunology , Heart Failure/immunology , Myocardial Infarction/immunology , T-Lymphocytes/immunology , Age Factors , Antigens, CD/genetics , Antigens, CD/immunology , Cell Communication/genetics , Cell Communication/immunology , Cytokines/genetics , Cytokines/immunology , Endomyocardial Fibrosis/genetics , Endomyocardial Fibrosis/metabolism , Endomyocardial Fibrosis/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Fibroblasts/pathology , Gene Expression Regulation , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/pathology , Humans , Inflammation , Macrophages/immunology , Macrophages/pathology , Male , Myocardial Infarction/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/immunology , Myocardium/pathology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/pathology , Signal Transduction , T-Lymphocytes/classification , T-Lymphocytes/pathology
17.
J Periodontal Res ; 55(1): 107-115, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31552683

ABSTRACT

BACKGROUND AND OBJECTIVE: Periodontal disease (PD) afflicts approximately 50% of the population in the United States and is characterized by chronic inflammation of the periodontium that can lead to loss of the periodontal ligament through collagen degradation, loss of alveolar bone, and to eventual tooth loss. Previous studies have implicated transglutaminase (TG) activity in promoting thin collagen I fiber morphology and decreased mechanical strength in homeostatic PDL. The aim of this study was to determine whether TG activity influenced collagen assembly in PDL in the setting of periodontal disease. MATERIAL AND METHODS: A ligature model was used to induce clinically relevant PD in mice. Mice with ligature were assessed at 5 and 14 days to determine PDL collagen morphology, transglutaminase (TG) activity, and bone loss. The effects of inhibition of TG on PDL were assessed by immunohistochemistry and second-harmonic generation (SHG) to visualize collagen fibers in native tissue. RESULTS: Ligature placement around the 2nd molar resulted in significant bone loss and a decrease in total collagen content after 5 days of ligature placement. A significant increase in thin over thick fibers was also demonstrated in mice with ligature at 5 days associated with apparent increases in immunoreactivity for TG2 and for TG-mediated N-ε-γ-glutamyl cross-links in PDL. Inhibition of TG activity increased total collagen and thick collagen fiber content over vehicle control in mice with ligature for 5 days. SHG of PDL was used to visualize and quantify the effects of TG inhibition on enhanced collagen fiber organization in unfixed control and diseased PDL. CONCLUSION: These studies support a role of TG in regulating collagen fiber assembly and suggest that strategies to inhibit TG activity in disease might contribute to restoration of PDL tissue integrity.


Subject(s)
Collagen/metabolism , Periodontal Ligament/enzymology , Periodontitis/enzymology , Transglutaminases/antagonists & inhibitors , Alveolar Bone Loss/pathology , Amines/pharmacology , Animals , Biotin/analogs & derivatives , Biotin/pharmacology , Cell Differentiation , Female , Male , Mice , Mice, Inbred C57BL , Random Allocation , X-Ray Microtomography
18.
Anat Rec (Hoboken) ; 303(6): 1624-1629, 2020 06.
Article in English | MEDLINE | ID: mdl-30980479

ABSTRACT

Matricellular proteins are secreted proteins that, among other functions, can contribute to extracellular matrix (ECM) assembly including modulation of cell:ECM interactions. Recent discoveries have indicated a fundamental role for the ECM in the regulation of inflammatory responses including cell extravasation and recruitment, immune cell differentiation, polarization, activation, and retention in tissues. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular collagen-binding protein implicated in fibrillar collagen assembly in the ECM of connective tissue as well as in basal lamina organization. Functions of SPARC in modulating cell adhesion events are also reported. Studies of phenotypic responses observed in SPARC-null mice to a variety of injury models have yielded interesting insight into the functional importance of SPARC production and aberrations in ECM structure that occur in the absence of SPARC that influence immune cell behavior and inflammatory pathways. In this review, we will discuss several examples from different tissues in which SPARC-null mice exhibited an inflammatory response distinct from those of SPARC expressing mice and provide insight into novel ECM-dependent mechanisms that influence these responses. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.


Subject(s)
Extracellular Matrix/metabolism , Inflammation/metabolism , Osteonectin/metabolism , Animals , Extracellular Matrix/genetics , Fibrillar Collagens/metabolism , Inflammation/genetics , Mice , Mice, Knockout , Osteonectin/genetics
19.
SELECTION OF CITATIONS
SEARCH DETAIL
...