Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chembiochem ; 21(9): 1304-1308, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31863714

ABSTRACT

Oligonucleotides are important therapeutic approaches, as evidenced by recent clinical successes with antisense oligonucleotides (ASOs) and double-stranded short interfering RNAs (siRNAs). Phosphorothioate (PS) modifications are a standard feature in the current generation of oligonucleotide therapeutics, but generate isomeric mixtures, leading to 2n isomers. All currently marketed therapeutic oligonucleotides (ASOs and siRNAs) are complex isomeric mixtures. Recent chemical methodologies for stereopure PS insertions have resulted in preliminary rules for ASOs, with multiple stereopure ASOs moving into clinical development. Although siRNAs have comparatively fewer PSs, the field has yet to embrace the idea of stereopure siRNAs. Herein, it has been investigated whether the individual isomers contribute equally to the in vivo activity of a representative siRNA. The results of a systematic evaluation of stereopure PS incorporation into antithrombin-3 (AT3) siRNA are reported and demonstrate that individual PS isomers dramatically affect in vivo activity. A standard siRNA design with six PS insertions was investigated and it was found that only about 10 % of the 64 possible isomers were as efficacious as the stereorandom control. Based on this data, it can be concluded that G1R stereochemistry is critical, G2R is important, G21S is preferable, and G22 and P1/P2 tolerate both isomers. Surprisingly, the disproportionate loss of efficacy for most isomers does not translate into significant gain for the productive isomers, and thus, warrants further mechanistic studies.


Subject(s)
Antithrombins/chemistry , Hepatocytes/drug effects , Phosphorothioate Oligonucleotides/chemistry , RNA, Double-Stranded/genetics , RNA, Small Interfering/genetics , Animals , Antithrombins/metabolism , Cells, Cultured , Hepatocytes/metabolism , Mice , RNA, Double-Stranded/administration & dosage , RNA, Double-Stranded/chemistry , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/chemistry
2.
Chembiochem ; 21(9): 1298-1303, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31863718

ABSTRACT

Since the recognition of oligonucleotides as a therapeutic modality, significant work has been devoted to improving therapeutic properties, including nuclease stability. Phosphorothioate (PS) modifications of phosphodiesters are one of the most explored chemical modification and integral to currently approved oligonucleotide therapeutics, including antisense oligonucleotides (ASOs) and short interfering RNAs (siRNAs). Insertion of sulfur into the phosphate bridge in an n-mer leads to 2n isomeric mixtures of PSs, with different nuclease stability and protein-binding properties. Efforts to create stereopure PS-containing oligonucleotides has spurred interest in identifying new synthetic methods. Herein, work on a novel and practical tricyclic PIII chiral auxiliary and its application in solid-supported synthesis of stereopure PS-containing oligonucleotides is reported.


Subject(s)
Indoles/chemistry , Phosphorothioate Oligonucleotides/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Humans , Stereoisomerism
3.
Sci Rep ; 6: 26071, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27184415

ABSTRACT

IL-17A is a pro-inflammatory cytokine that has been implicated in autoimmune and inflammatory diseases. Monoclonal antibodies inhibiting IL-17A signaling have demonstrated remarkable efficacy, but an oral therapy is still lacking. A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. Tested in primary human cells, HAP blocked the production of multiple inflammatory cytokines. Crystal structure studies revealed that two HAP molecules bind to one IL-17A dimer symmetrically. The N-terminal portions of HAP form a ß-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. This mode of inhibition suggests opportunities for developing peptide antagonists against this challenging target.


Subject(s)
Enzyme Inhibitors/metabolism , Interleukin-17/antagonists & inhibitors , Peptides/metabolism , Receptors, Interleukin-17/metabolism , Amino Acid Substitution , Cells, Cultured , Crystallography, X-Ray , Enzyme Inhibitors/isolation & purification , Humans , Interleukin-17/chemistry , Mass Screening , Models, Molecular , Mutagenesis , Peptide Library , Peptides/chemistry , Peptides/isolation & purification , Protein Binding , Protein Conformation
4.
J Pharmacol Exp Ther ; 346(2): 270-80, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23720456

ABSTRACT

Fibroblast growth factor (FGF)21 improves insulin sensitivity, reduces body weight, and reverses hepatic steatosis in preclinical species. We generated long-acting FGF21 mimetics by site-specific conjugation of the protein to a scaffold antibody. Linking FGF21 through the C terminus decreased bioactivity, whereas bioactivity was maintained by linkage to selected internal positions. In mice, these CovX-Bodies retain efficacy while increasing half-life up to 70-fold compared with wild-type FGF21. A preferred midlinked CovX-Body, CVX-343, demonstrated enhanced in vivo stability in preclinical species, and a single injection improved glucose tolerance for 6 days in ob/ob mice. In diet-induced obese mice, weekly doses of CVX-343 reduced body weight, blood glucose, and lipids levels. In db/db mice, CVX-343 increased glucose tolerance, pancreatic ß-cell mass, and proliferation. CVX-343, created by linkage of the CovX scaffold antibody to the engineered residue A129C of FGF21 protein, demonstrated superior preclinical pharmacodynamics by extending serum half-life of FGF21 while preserving full therapeutic functionality.


Subject(s)
Antibodies/chemistry , Fibroblast Growth Factors/chemistry , Hypoglycemic Agents/chemistry , 3T3-L1 Cells , Animals , Body Weight/drug effects , Cysteine/chemistry , Delayed-Action Preparations , Diabetes Mellitus/blood , Diabetes Mellitus/drug therapy , Energy Metabolism/drug effects , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Immunoglobulin Fab Fragments/chemistry , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/pathology , Lysine/chemistry , Macaca fascicularis , Male , Mice , Mice, Obese , Molecular Mimicry , Rats , Rats, Sprague-Dawley , Recombinant Proteins/chemistry
5.
Bioorg Med Chem Lett ; 22(13): 4249-53, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22664129

ABSTRACT

We have developed modified maleimide novel linkers with improved chemical stability that could potentially be used in conjugating various pharmacophores such as oligo nucleotides, peptides, and proteins to antibodies to afford novel biologics with well-defined therapeutic benefits and improved pharmacokinetic properties. These linkers expand the array of tools available for bioconjugation of pharmacophores to antibodies.


Subject(s)
Antibodies/immunology , Maleimides/chemistry , Drug Carriers/chemistry , Drug Stability , Glutathione/chemistry , Hydrogen-Ion Concentration , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Peptides/chemistry , Peptides/metabolism , Proteins/genetics , Proteins/metabolism , Temperature
6.
Transl Oncol ; 4(4): 249-57, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21804921

ABSTRACT

CVX-045 is produced by covalently attaching a thrombospondin 1 (TSP-1) mimetic comprising a peptidic sequence and a linker to the Fab binding site of a proprietary scaffold antibody. CVX-045 possesses the potency of the TSP-1-derived peptide, along with the advantageous pharmacokinetics of an antibody. Antitumor activity of CVX-045 was evaluated in human xenograft models alone and in combination with standard chemotherapies and targeted molecules. In A549 and A431 xenograft models, CVX-045 demonstrated significant (P < .05) antiangiogenic activity, reducing tumor microvessel density and increasing the levels of necrosis within treated tumors. In an HT-29 xenograft model, CVX-045 in combination with 5-fluorouracil significantly (P < .01) decreased tumor growth rate compared with vehicle, CVX-045, or 5-fluorouracil alone. Cotreatment of CVX-045 plus CPT-11 delayed progression of tumor growth from day 28 to 60. In contrast CVX-045 alone treatment did not delay the progression of tumor growth, and CPT-11 alone delayed progression of tumor growth to day 39. Cotreatment of CVX-045 with sunitinib extended the time to reach tumor load from day 26 to 40. In summary, CVX-045 exhibits significant antiangiogenic activity in several tumor models and enhances antitumor activity in combination with chemotherapy or targeted therapies. These data suggest future avenues for effective combination therapy in treating solid tumors. CVX-045 has recently completed a phase 1 trial in solid tumors where it has been well tolerated.

7.
J Med Chem ; 54(5): 1256-65, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21280651

ABSTRACT

Novel phage-derived peptides are the first reported molecules specifically targeting human placental growth factor 1 (PlGF-1). Phage data enabled peptide modifications that decreased IC(50) values in PlGF-1/VEGFR-1 competition ELISA from 100 to 1 µM. Peptides exhibiting enhanced potency were bioconjugated to the CovX antibody scaffold 1 (CVX-2000), generating bivalent CovX-Bodies with 2 nM K(D) against PlGF-1. In vitro and in vivo peptide cleavage mapping studies enabled the identification of proteolytic hotspots that were subsequently chemically modified. These changes decreased IC(50) to 0.4 nM and increased compound stability from 5% remaining at 6 h after injection to 35% remaining at 24 h with a ß phase half-life of 75 h in mice. In cynomolgus monkey, a 78 h ß half-life was observed for lead compound 2. The pharmacological properties of 2 are currently being explored.


Subject(s)
Antibodies/chemistry , Peptides/chemistry , Pregnancy Proteins/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Binding, Competitive , Cross Reactions , Drug Stability , Enzyme-Linked Immunosorbent Assay , Humans , Macaca fascicularis , Male , Mice , Models, Molecular , Molecular Sequence Data , Peptide Library , Peptides/pharmacokinetics , Peptides/pharmacology , Placenta Growth Factor , Protein Binding , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors
8.
Clin Cancer Res ; 17(5): 1001-11, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21233403

ABSTRACT

PURPOSE: Angiopoietin-1 (Ang1) plays a key role in maintaining stable vasculature, whereas in a tumor Ang2 antagonizes Ang1's function and promotes the initiation of the angiogenic switch. Specifically targeting Ang2 is a promising anticancer strategy. Here we describe the development and characterization of a new class of biotherapeutics referred to as CovX-Bodies, which are created by chemical fusion of a peptide and a carrier antibody scaffold. EXPERIMENTAL DESIGN: Various linker tethering sites on peptides were examined for their effect on CovX-Body in vitro potency and pharmacokinetics. Ang2 CovX-Bodies with low nmol/L IC(50)s and significantly improved pharmacokinetics were tested in tumor xenograft studies alone or in combination with standard of care agents. Tumor samples were analyzed for target engagement, via Ang2 protein level, CD31-positive tumor vasculature, and Tie2 expressing monocyte penetration. RESULTS: Bivalent Ang2 CovX-Bodies selectively block the Ang2-Tie2 interaction (IC(50) < 1 nmol/L) with dramatically improved pharmacokinetics (T(½) > 100 hours). Using a staged Colo-205 xenograft model, significant tumor growth inhibition (TGI) was observed (40%-63%, P < 0.01). Ang2 protein levels were reduced by approximately 50% inside tumors (P < 0.01), whereas tumor microvessel density (P < 0.01) and intratumor proangiogenic Tie2(+)CD11b(+) cells (P < 0.05) were significantly reduced. When combined with sunitinib, sorafenib, bevacizumab, irinotecan, or docetaxel, Ang2 CovX-Bodies produced even greater efficacy (∼80% TGI, P < 0.01). CONCLUSION: CovX-Bodies provide an elegant solution to overcome the pharmacokinetic-pharmacodynamic problems of peptides. Long-acting Ang2 specific CovX-Bodies will be useful as single agents and in combination with standard-of-care agents.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Angiopoietin-2/antagonists & inhibitors , Immunoconjugates/pharmacology , Neoplasms, Experimental/drug therapy , Neovascularization, Pathologic/metabolism , Peptides/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism , Angiogenesis Inhibitors/pharmacokinetics , Angiogenesis Inhibitors/therapeutic use , Angiopoietin-2/metabolism , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CD11b Antigen/analysis , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme-Linked Immunosorbent Assay , Gene Expression , Humans , Immunoconjugates/pharmacokinetics , Immunoconjugates/therapeutic use , Macrophages/drug effects , Male , Mice , Monocytes , Neoplasms, Experimental/pathology , Platelet Endothelial Cell Adhesion Molecule-1/analysis , Rats , Rats, Sprague-Dawley , Receptor Protein-Tyrosine Kinases/genetics , Receptor, TIE-2 , Xenograft Model Antitumor Assays
9.
Proc Natl Acad Sci U S A ; 107(52): 22611-6, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21149738

ABSTRACT

Bispecific antibodies (BsAbs) are regarded as promising therapeutic agents due to their ability to simultaneously bind two different antigens. Several bispecific modalities have been developed, but their utility is limited due to problems with stability and manufacturing complexity. Here we report a versatile technology, based on a scaffold antibody and pharmacophore peptide heterodimers, that enables rapid generation and chemical optimization of bispecific antibodies, which are termed bispecific CovX-Bodies. Two different peptides are joined together using a branched azetidinone linker and fused to the scaffold antibody under mild conditions in a site-specific manner. Whereas the pharmacophores are responsible for functional activities, the antibody scaffold imparts long half-life and Ig-like distribution. The pharmacophores can be chemically optimized or replaced with other pharmacophores to generate optimized or unique bispecific antibodies. As a prototype, we developed a bispecific antibody that binds both vascular endothelial growth factor (VEGF) and angiopoietin-2 (Ang2) simultaneously, inhibits their function, shows efficacy in tumor xenograft studies, and greatly augments the antitumor effects of standard chemotherapy. This unique antiangiogenic bispecific antibody is in phase-1 clinical trials.


Subject(s)
Angiopoietin-2/immunology , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Vascular Endothelial Growth Factor A/immunology , Amino Acid Sequence , Angiopoietin-2/chemistry , Angiopoietin-2/metabolism , Animals , Antibodies, Bispecific/metabolism , Antibody Specificity , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , Azetidines/chemistry , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Humans , Immunologic Factors/immunology , Immunologic Factors/metabolism , Immunologic Factors/pharmacokinetics , Macaca fascicularis , Male , Mice , Mice, Nude , Molecular Sequence Data , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology , Protein Binding , Rats , Rats, Sprague-Dawley , Surface Plasmon Resonance , Tumor Burden/drug effects , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
10.
Bioorg Med Chem Lett ; 17(2): 501-6, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17055724

ABSTRACT

Aryl sulfonamide-based endothelin antagonists were synthesized and covalently linked to the reactive lysine of the m38C2 antibody to create a series of CovX-Bodies. These chemically programmed antibodies behaved as potent endothelin receptor antagonists in vitro and had antitumor efficacy in a prostate cancer xenograft model which, on a molar basis, far exceeded the activity of the parent small molecule.


Subject(s)
Antibodies/chemistry , Antibodies/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Receptors, Endothelin/drug effects , Animals , CHO Cells , Cricetinae , Cricetulus , Endothelin A Receptor Antagonists , Endothelin B Receptor Antagonists , Humans , Indicators and Reagents , Mice , Mice, Nude , Molecular Conformation , Neoplasm Transplantation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...