Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Res Q Exerc Sport ; 76(4): 426-32, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16739680

ABSTRACT

The purpose of this study was to develop a regression equation to predict maximal oxygen uptake (VO2max) based on nonexercise (N-EX) data. All participants (N = 100), ages 18-65 years, successfully completed a maximal graded exercise test (GXT) to assess VO2max (M = 39.96 mL x kg(-1) x min(-1), SD = 9.54). The N-EX data collected just before the maximal GXT included the participant's age; gender; body mass index (BMI); perceived functional ability (PFA) to walk, jog, or run given distances; and current physical activity (PA-R) level. Multiple linear regression generated the following N-EX prediction equation (R = .93, SEE = 3.45 mL x kg(-1) x min(-1), % SEE = 8.62): VO2max (mL x kg(-1) x min(-1)) = 48.0730 + (6.1779 x gender; women = 0, men = 1) - (0. 2463 x age) - (0.6186 x BMI) + (0.7115 x PFA) + (0.6709 x PA-R). Cross validation using PRESS (predicted residual sum of squares) statistics revealed minimal shrinkage (R(p) = .91 and SEE(p) = 3.63 mL x kg(-1) x min(-1)); thus, this model should yield acceptable accuracy when applied to an independent sample of adults (ages 18-65 years) with a similar cardiorespiratory fitness level. Based on standardized beta-weights, the PFA variable (0.41) was the most effective at predicting VO2max followed by age (-0.34), gender (0.33), BMI (-0.27), and PA-R (0.16). This study provides a N-EX regression model that yields relatively accurate results and is a convenient way to predict VO2max in adult men and women.


Subject(s)
Models, Biological , Models, Statistical , Oxygen Consumption/physiology , Adolescent , Adult , Aged , Exercise Test , Female , Humans , Linear Models , Male , Middle Aged , Predictive Value of Tests , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...