Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(11): e0260395, 2021.
Article in English | MEDLINE | ID: mdl-34847169

ABSTRACT

Fraud is a pervasive problem and can occur as fabrication, falsification, plagiarism, or theft. The scientific community is not exempt from this universal problem and several studies have recently been caught manipulating or fabricating data. Current measures to prevent and deter scientific misconduct come in the form of the peer-review process and on-site clinical trial auditors. As recent advances in high-throughput omics technologies have moved biology into the realm of big-data, fraud detection methods must be updated for sophisticated computational fraud. In the financial sector, machine learning and digit-frequencies are successfully used to detect fraud. Drawing from these sources, we develop methods of fabrication detection in biomedical research and show that machine learning can be used to detect fraud in large-scale omic experiments. Using the gene copy-number data as input, machine learning models correctly predicted fraud with 58-100% accuracy. With digit frequency as input features, the models detected fraud with 82%-100% accuracy. All of the data and analysis scripts used in this project are available at https://github.com/MSBradshaw/FakeData.


Subject(s)
Big Data , Biomedical Research , Fraud , Machine Learning , Scientific Misconduct , Humans
2.
Biol Direct ; 15(1): 1, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941542

ABSTRACT

BACKGROUND: Drug-induced liver injury (DILI) is a serious concern during drug development and the treatment of human disease. The ability to accurately predict DILI risk could yield significant improvements in drug attrition rates during drug development, in drug withdrawal rates, and in treatment outcomes. In this paper, we outline our approach to predicting DILI risk using gene-expression data from Build 02 of the Connectivity Map (CMap) as part of the 2018 Critical Assessment of Massive Data Analysis CMap Drug Safety Challenge. RESULTS: First, we used seven classification algorithms independently to predict DILI based on gene-expression values for two cell lines. Similar to what other challenge participants observed, none of these algorithms predicted liver injury on a consistent basis with high accuracy. In an attempt to improve accuracy, we aggregated predictions for six of the algorithms (excluding one that had performed exceptionally poorly) using a soft-voting method. This approach also failed to generalize well to the test set. We investigated alternative approaches-including a multi-sample normalization method, dimensionality-reduction techniques, a class-weighting scheme, and expanding the number of hyperparameter combinations used as inputs to the soft-voting method. We met limited success with each of these solutions. CONCLUSIONS: We conclude that alternative methods and/or datasets will be necessary to effectively predict DILI in patients based on RNA expression levels in cell lines. REVIEWERS: This article was reviewed by Pawel P Labaj and Aleksandra Gruca (both nominated by David P Kreil).


Subject(s)
Chemical and Drug Induced Liver Injury/genetics , Gene Expression Profiling/methods , Transcriptome , Algorithms , Humans , Models, Biological , Risk Assessment
3.
PeerJ ; 7: e6101, 2019.
Article in English | MEDLINE | ID: mdl-30842894

ABSTRACT

To accelerate scientific progress on remote tree classification-as well as biodiversity and ecology sampling-The National Institute of Science and Technology created a community-based competition where scientists were invited to contribute informatics methods for classifying tree species and genus using crown-level images of trees. We classified tree species and genus at the pixel level using hyperspectral and LiDAR observations. We compared three algorithms that have been implemented extensively across a broad range of research applications: support vector machines, random forests, and multilayer perceptron. At the pixel level, the multilayer perceptron algorithm classified species or genus with high accuracy (92.7% and 95.9%, respectively) on the training data and performed better than the other two algorithms (85.8-93.5%). This indicates promise for the use of the multilayer perceptron (MLP) algorithm for tree-species classification based on hyperspectral and LiDAR observations and coincides with a growing body of research in which neural network-based algorithms outperform other types of classification algorithm for machine vision. To aggregate patterns across the images, we used an ensemble approach that averages the pixel-level outputs of the MLP algorithm to classify species at the crown level. The average accuracy of these classifications on the test set was 68.8% for the nine species.

SELECTION OF CITATIONS
SEARCH DETAIL
...