Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mov Disord Clin Pract ; 10(9): 1414-1418, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37772307

ABSTRACT

Background: Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease characterized by widespread accumulation of hyperphosphorylated tau that typically occurs in people who have suffered repetitive head impacts. To date, very few cases have been reported in association football players. Objectives: To describe the clinicopathological features of a case of CTE in an 84-year-old former football player who was clinically diagnosed as having dementia with Lewy bodies (DLB). Methods: A retrospective review of the patient's primary care and hospital medical records was performed along with a comprehensive neuropathological examination. Results: This patient presented at age 84 with symmetrical parkinsonism and cognitive impairment that was exacerbated by prochlorperazine. His condition was rapidly progressive with recurrent falls within 1 year. Other features included headaches, depression, anxiety, suicidal ideation, disturbed sleep and aggression. He received a clinical diagnosis of DLB and died approximately 2 years after the onset of symptoms. A post-mortem examination revealed stage 4 CTE. Conclusions: While the contemporaneous onset of parkinsonism and cognitive symptoms in the context of possible neuroleptic sensitivity is suggestive of DLB, the additional symptoms of aggressive behavior, depression and suicidality in a former football player are consistent with the neuropathological diagnosis of CTE. This case, which is notable for the late presentation, demonstrates that CTE may masquerade as other dementias and highlights the importance of seeking a history of repetitive head impacts.

2.
Acta Neuropathol ; 139(4): 717-734, 2020 04.
Article in English | MEDLINE | ID: mdl-31950334

ABSTRACT

Corticobasal degeneration typically progresses gradually over 5-7 years from onset till death. Fulminant corticobasal degeneration cases with a rapidly progressive course were rarely reported (RP-CBD). This study aimed to investigate their neuropathological characteristics. Of the 124 autopsy-confirmed corticobasal degeneration cases collected from 14 centres, we identified 6 RP-CBD cases (4.8%) who died of advanced disease within 3 years of onset. These RP-CBD cases had different clinical phenotypes including rapid global cognitive decline (N = 2), corticobasal syndrome (N = 2) and Richardson's syndrome (N = 2). We also studied four corticobasal degeneration cases with an average disease duration of 3 years or less, who died of another unrelated illness (Intermediate-CBD). Finally, we selected 12 age-matched corticobasal degeneration cases out of a cohort of 110, who had a typical gradually progressive course and reached advanced clinical stage (End-stage-CBD). Quantitative analysis showed high overall tau burden (p = 0.2) and severe nigral cell loss (p = 0.47) in both the RP-CBD and End-stage-CBD groups consistent with advanced pathological changes, while the Intermediate-CBD group (mean disease duration = 3 years) had milder changes than End-stage-CBD (p < 0.05). These findings indicated that RP-CBD cases had already developed advanced pathological changes as those observed in End-stage-CBD cases (mean disease duration = 6.7 years), but within a significantly shorter duration (2.5 years; p < 0.001). Subgroup analysis was performed to investigate the cellular patterns of tau aggregates in the anterior frontal cortex and caudate by comparing neuronal-to-astrocytic plaque ratios between six RP-CBD cases, four Intermediate-CBD and 12 age-matched End-stage-CBD. Neuronal-to-astrocytic plaque ratios of Intermediate-CBD and End-stage-CBD, but not RP-CBD, positively correlated with disease duration in both the anterior frontal cortex and caudate (p = 0.02). In contrast to the predominance of astrocytic plaques we previously reported in preclinical asymptomatic corticobasal degeneration cases, neuronal tau aggregates predominated in RP-CBD exceeding those in Intermediate-CBD (anterior frontal cortex: p < 0.001, caudate: p = 0.001) and End-stage-CBD (anterior frontal cortex: p = 0.03, caudate: p = 0.01) as demonstrated by its higher neuronal-to-astrocytic plaque ratios in both anterior frontal cortex and caudate. We did not identify any difference in age at onset, any pathogenic tau mutation or concomitant pathologies that could have contributed to the rapid progression of these RP-CBD cases. Mild TDP-43 pathology was observed in three RP-CBD cases. All RP-CBD cases were men. The MAPT H2 haplotype, known to be protective, was identified in one RP-CBD case (17%) and 8 of the matched End-stage-CBD cases (67%). We conclude that RP-CBD is a distinct aggressive variant of corticobasal degeneration with characteristic neuropathological substrates resulting in a fulminant disease process as evident both clinically and pathologically. Biological factors such as genetic modifiers likely play a pivotal role in the RP-CBD variant and should be the subject of future research.


Subject(s)
Basal Ganglia Diseases/pathology , Neurodegenerative Diseases/pathology , tau Proteins/metabolism , Aged , Aged, 80 and over , Basal Ganglia Diseases/metabolism , Cerebral Cortex/pathology , Disease Progression , Female , Humans , Male , Middle Aged , Neurodegenerative Diseases/metabolism
3.
Endocr Relat Cancer ; 26(1): 165-180, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30345732

ABSTRACT

Primary cilia are sensory organelles involved in regulation of cellular signaling. Cilia loss is frequently observed in tumors; yet, the responsible mechanisms and consequences for tumorigenesis remain unclear. We demonstrate that cilia structure and function is disrupted in human pheochromocytomas - endocrine tumors of the adrenal medulla. This is concomitant with transcriptional changes within cilia-mediated signaling pathways that are associated with tumorigenesis generally and pheochromocytomas specifically. Importantly, cilia loss was most dramatic in patients with germline mutations in the pseudohypoxia-linked genes SDHx and VHL. Using a pheochromocytoma cell line derived from rat, we show that hypoxia and oncometabolite-induced pseudohypoxia are key drivers of cilia loss and identify that this is dependent on activation of an Aurora-A/HDAC6 cilia resorption pathway. We also show cilia loss drives dramatic transcriptional changes associated with proliferation and tumorigenesis. Our data provide evidence for primary cilia dysfunction contributing to pathogenesis of pheochromocytoma by a hypoxic/pseudohypoxic mechanism and implicates oncometabolites as ciliary regulators. This is important as pheochromocytomas can cause mortality by mechanisms including catecholamine production and malignant transformation, while hypoxia is a general feature of solid tumors. Moreover, pseudohypoxia-induced cilia resorption can be pharmacologically inhibited, suggesting potential for therapeutic intervention.


Subject(s)
Adrenal Gland Neoplasms , Cilia , Pheochromocytoma , Adolescent , Adult , Aged , Animals , Child , Female , Humans , Male , Middle Aged , PC12 Cells , Rats , Young Adult
4.
Hum Mol Genet ; 26(16): 3130-3143, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28535259

ABSTRACT

Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay (ARSACS) is caused by mutations in the gene SACS, encoding the 520 kDa protein sacsin. Although sacsin's physiological role is largely unknown, its sequence domains suggest a molecular chaperone or protein quality control function. Consequences of its loss include neurofilament network abnormalities, specifically accumulation and bundling of perikaryal and dendritic neurofilaments. To investigate if loss of sacsin affects intermediate filaments more generally, the distribution of vimentin was analysed in ARSACS patient fibroblasts and in cells where sacsin expression was reduced. Abnormal perinuclear accumulation of vimentin filaments, which sometimes had a cage-like appearance, occurred in sacsin-deficient cells. Mitochondria and other organelles were displaced to the periphery of vimentin accumulations. Reorganization of the vimentin network occurs in vitro under stress conditions, including when misfolded proteins accumulate. In ARSACS patient fibroblasts HSP70, ubiquitin and the autophagy-lysosome pathway proteins Lamp2 and p62 relocalized to the area of the vimentin accumulation. There was no overall increase in ubiquitinated proteins, suggesting the ubiquitin-proteasome system was not impaired. There was evidence for alterations in the autophagy-lysosome pathway. Specifically, in ARSACS HDFs cellular levels of Lamp2 were elevated while levels of p62, which is degraded in autophagy, were decreased. Moreover, autophagic flux was increased in ARSACS HDFs under starvation conditions. These data show that loss of sacsin effects the organization of intermediate filaments in multiple cell types, which impacts the cellular distribution of other organelles and influences autophagic activity.


Subject(s)
Heat-Shock Proteins/metabolism , Intermediate Filaments/metabolism , Animals , Ataxia/genetics , Cell Culture Techniques , Cytoskeleton/metabolism , Fibroblasts/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Humans , Lysosomal-Associated Membrane Protein 2/metabolism , Mice , Mitochondria/metabolism , Molecular Chaperones/metabolism , Muscle Spasticity/genetics , Muscle Spasticity/metabolism , Proteostasis/genetics , Proteostasis/physiology , RNA-Binding Proteins/metabolism , Spinocerebellar Ataxias/congenital , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Vimentin/metabolism
5.
Hum Mol Genet ; 25(15): 3232-3244, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27288452

ABSTRACT

The neurodegenerative disease autosomal recessive spastic ataxia of Charlevoix Saguenay (ARSACS) is caused by loss of function of sacsin, a modular protein that is required for normal mitochondrial network organization. To further understand cellular consequences of loss of sacsin, we performed microarray analyses in sacsin knockdown cells and ARSACS patient fibroblasts. This identified altered transcript levels for oxidative phosphorylation and oxidative stress genes. These changes in mitochondrial gene networks were validated by quantitative reverse transcription PCR. Functional impairment of oxidative phosphorylation was then demonstrated by comparison of mitochondria bioenergetics through extracellular flux analyses. Moreover, staining with the mitochondrial-specific fluorescent probe MitoSox suggested increased levels of superoxide in patient cells with reduced levels of sacsin.Key to maintaining mitochondrial health is mitochondrial fission, which facilitates the dynamic exchange of mitochondrial components and separates damaged parts of the mitochondrial network for selective elimination by mitophagy. Fission is dependent on dynamin-related protein 1 (Drp1), which is recruited to prospective sites of division where it mediates scission. In sacsin knockdown cells and ARSACS fibroblasts, we observed a decreased incidence of mitochondrial associated Drp1 foci. This phenotype persists even when fission is induced by drug treatment. Mitochondrial-associated Drp1 foci are also smaller in sacsin knockdown cells and ARSACS fibroblasts. These data suggest a model for ARSACS where neurons with reduced levels of sacsin are compromised in their ability to recruit or retain Drp1 at the mitochondrial membrane leading to a decline in mitochondrial health, potentially through impaired mitochondrial quality control.


Subject(s)
Fibroblasts/metabolism , GTP Phosphohydrolases/metabolism , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Muscle Spasticity/metabolism , Spinocerebellar Ataxias/congenital , Cell Line, Tumor , Dynamins , Female , Fibroblasts/pathology , GTP Phosphohydrolases/genetics , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Male , Microtubule-Associated Proteins/genetics , Mitochondria/pathology , Mitochondrial Membranes/pathology , Mitochondrial Proteins/genetics , Muscle Spasticity/genetics , Muscle Spasticity/pathology , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/pathology
6.
Eur J Paediatr Neurol ; 19(4): 472-6, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25819952

ABSTRACT

BACKGROUND: ARSACS (autosomal-recessive spastic ataxia of Charlevoix-Saguenay) is a neurodegenerative disorder caused by SACS gene mutations and characterized by a triad of symptoms: early-onset cerebellar ataxia, spasticity and peripheral neuropathy. A characteristic retinal nerve fiber hypertrophy has been reported in several individuals with ARSACS. METHODS: We describe a patient with a unique clinical presentation of ataxia, nystagmus, dysarthria, hearing impairment, and retinal degeneration. Whole-exome-sequencing was performed as well as morphological studies in the patient's fibroblasts. RESULTS: A compound heterozygosity for a novel D3269N and N2380K mutations in the SACS gene was found. The parents are carriers. Morphological studies revealed a dramatic decrease in the number of cell mitochondria as well as a difference in mitochondrial network morphology. CONCLUSIONS: Retinal degeneration has never been reported in ARSACS. Since sacsin is involved in the mitochondrial fusion-fission process, we speculate that defected fission process may be responsible for an impaired mitochondrial function and retinal degeneration. Our patient has a unique clinical presentation of SACS mutations inconsistent with the classic ARSACS triad but also different from the "atypical" presentations described in the literature. Further studies are necessary to clarify the factors that modify the SACS related phenotype.


Subject(s)
Heat-Shock Proteins/genetics , Muscle Spasticity/complications , Muscle Spasticity/genetics , Retinal Degeneration/genetics , Spinocerebellar Ataxias/congenital , Child , Heterozygote , Humans , Male , Mitochondria/pathology , Mutation , Phenotype , Spinocerebellar Ataxias/complications , Spinocerebellar Ataxias/genetics
7.
Hum Mutat ; 32(12): 1385-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21898662

ABSTRACT

Heterozygous germline mutations of BMPR2 contribute to familial clustering of pulmonary arterial hypertension (PAH). To further explore the genetic basis of PAH in isolated cases, we undertook a candidate gene analysis to identify potentially deleterious variation. Members of the bone morphogenetic protein (BMP) pathway, namely SMAD1, SMAD4, SMAD5, and SMAD9, were screened by direct sequencing for gene defects. Four variants were identified in SMADs 1, 4, and 9 among a cohort of 324 PAH cases, each not detected in a substantial control population. Of three amino acid substitutions identified, two demonstrated reduced signaling activity in vitro. A putative splice site mutation in SMAD4 resulted in moderate transcript loss due to compromised splicing efficiency. These results demonstrate the role of BMPR2 mutation in the pathogenesis of PAH and indicate that variation within the SMAD family represents an infrequent cause of the disease.


Subject(s)
Hypertension, Pulmonary/genetics , Signal Transduction/genetics , Bone Morphogenetic Protein Receptors, Type II/genetics , Cohort Studies , Familial Primary Pulmonary Hypertension , Female , Gene Expression Regulation , Humans , Male , Sequence Analysis, DNA , Smad1 Protein/genetics , Smad8 Protein/genetics
8.
Am J Hum Genet ; 88(5): 574-85, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21565291

ABSTRACT

Regulation of cell proliferation and motility is essential for normal development. The Rho family of GTPases plays a critical role in the control of cell polarity and migration by effecting the cytoskeleton, membrane trafficking, and cell adhesion. We investigated a recognized developmental disorder, Adams-Oliver syndrome (AOS), characterized by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). Through a genome-wide linkage analysis, we detected a locus for autosomal-dominant ACC-TTLD on 3q generating a maximum LOD score of 4.93 at marker rs1464311. Candidate-gene- and exome-based sequencing led to the identification of independent premature truncating mutations in the terminal exon of the Rho GTPase-activating protein 31 gene, ARHGAP31, which encodes a Cdc42/Rac1 regulatory protein. Mutant transcripts are stable and increase ARHGAP31 activity in vitro through a gain-of-function mechanism. Constitutively active ARHGAP31 mutations result in a loss of available active Cdc42 and consequently disrupt actin cytoskeletal structures. Arhgap31 expression in the mouse is substantially restricted to the terminal limb buds and craniofacial processes during early development; these locations closely mirror the sites of impaired organogenesis that characterize this syndrome. These data identify the requirement for regulated Cdc42 and/or Rac1 signaling processes during early human development.


Subject(s)
Ectodermal Dysplasia/genetics , GTPase-Activating Proteins/genetics , Mutation , Actins/metabolism , Cell Adhesion , Cell Movement , Cell Polarity , Cell Proliferation , Chromosome Mapping , Cytoskeleton/metabolism , DNA Mutational Analysis , Ectodermal Dysplasia/embryology , Female , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Limb Deformities, Congenital/embryology , Limb Deformities, Congenital/genetics , Male , Scalp Dermatoses/congenital , Scalp Dermatoses/embryology , Scalp Dermatoses/genetics , Signal Transduction , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...