Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 144(4): 1509-1512, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35072472

ABSTRACT

We report the appearance of ferroelectric behavior arising from a room-temperature cation exchange of cadmium-based semiconductor nanoparticles. Fluorescence retention was achieved through protective CdS shelling before cation exchange with tin(IV) by containing defects in the CdS shell rather than the fluorescent CdSe cores. Ferroelectric response, measured using a Sawyer-Tower circuit, was kept constant, while fluorescence retention increases with an increase in the number of CdS monolayers. At 8 monolayers, fluorescence retention reached 99%, allowing for the addition of ferroelectric applications to the already ever-growing list of quantum dot applications.

2.
J Chem Phys ; 152(16): 161104, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32357779

ABSTRACT

Thick-shell InP/ZnSe III-V/II-VI quantum dots (QDs) were synthesized with two distinct interfaces between the InP core and ZnSe shell: alloy and core/shell. Despite sharing similar optical properties in the spectral domain, these two QD systems have differing amounts of indium incorporation in the shell as determined by high-resolution energy-dispersive x-ray spectroscopy scanning transmission electron microscopy. Ultrafast fluorescence upconversion spectroscopy was used to probe the charge carrier dynamics of these two systems and shows substantial charge carrier trapping in both systems that prevents radiative recombination and reduces the photoluminescence quantum yield. The alloy and core/shell QDs show slight differences in the extent of charge carrier localization with more extensive trapping observed in the alloy nanocrystals. Despite the ability to grow a thick shell, structural defects caused by III-V/II-VI charge carrier imbalances still need to be mitigated to further improve InP QDs.

3.
J Phys Chem C Nanomater Interfaces ; 119(49): 27829-27837, 2015.
Article in English | MEDLINE | ID: mdl-30220954

ABSTRACT

Silver clusters with ≲30 atoms are molecules with diverse electronic spectra and wide-ranging emission intensities. Specific cluster chromophores form within DNA strands, and we consider a DNA scaffold that transforms a pair of silver clusters. This ~20-nucleotide strand has two components, a cluster domain (S1) that stabilizes silver clusters and a recognition site (S2) that hybridizes with complementary oligonucleotides (S2C). The single-stranded S1-S2 exclusively develops clusters with violet absorption and low emission. This conjugate hybridizes with S2C to form S1-S2:S2C, and the violet chromophore transforms to a fluorescent counterpart with λex ≈ 490 nm/λem ≈ 550 nm and with ~100-fold stronger emission. Our studies focus on both the S1 sequence and structure that direct this violet → blue-green cluster transformation. From the sequence perspective, C4X sequences with X = adenine, thymine, and/or guanine favor the blue-green cluster, and the specificity of the binding site depends on three factors: the number of C4X repeats, the identity of the X nucleobase, and the number of contiguous cytosines. A systematic series of oligonucleotides identified the optimal S1 sequence C4AC4T and discerned distinct roles for the adenine, thymine, and cytosines. From the structure perspective, two factors guide the conformation of the C4AC4T sequence: hybridization with the S2C complement and coordination by the cluster adduct. Spectroscopic and chromatographic studies show that the single-stranded C4AC4T is folded by its blue-green cluster adduct. We propose a structural model in which the two C4X motifs within C4AC4T are cross-linked by the encapsulated cluster. These studies suggest that the structures of the DNA host and the cluster adduct are interdependent.

SELECTION OF CITATIONS
SEARCH DETAIL
...