Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Inorg Chem ; 39(10): 2125-9, 2000 May 15.
Article in English | MEDLINE | ID: mdl-12526523

ABSTRACT

The utility of polydentate monoanionic [Zr2(OiPr)9]- in generating arene-soluble, unsolvated, mixed-metal Zr/Ce and Zr/Y complexes is described. The synthesis of other mixed-metal zirconium lanthanide complexes was also studied to explore the relationship of metal size to structure. Lanthanide trihalides react in THF with KZr2(OiPr)9 to form unsolvated dimers, [[Zr2(OiPr)9]LnCl2]2, with the larger metals, Ln = Ce (1), Ho (2), Y (3), and unsolvated monomers, [Zr2(OiPr)9]LnCl2, with the smaller elements, Ln = Er (4), Yb (5). The synthesis of a monomeric iodide analogue, [Zr2(OiPr)9]TmI2, 6, by reduction of Zr2(OiPr)8(iPrOH)2 with TmI2(DME)3 is also reported. In all of these complexes, the [Zr2(OiPr)9]- subunit is tetradentate. 1-6 are compared with related cyclopentadienyl halide complexes to evaluate the special features of the dizirconium nonaisopropoxide ligand versus cyclopentadienide.

3.
Am J Nurs ; 99(1 Pt 1): 60-2, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9932059
4.
Proc Soc Exp Biol Med ; 187(1): 7-13, 1988 Jan.
Article in English | MEDLINE | ID: mdl-3340620

ABSTRACT

Various peroxidases in the presence of hydrogen peroxide and a halide ion have been shown to exert a cytolytic activity against erythrocytes and other cells. However, few studies have been done to elucidate the active site on the enzymes that is responsible for the cytotoxic activity. In addressing this question we found that boiling of horseradish peroxidase only partially abolishes its cytotoxic activity, suggesting that an intact tertiary structure of the protein may not be essential for the cytotoxic activity. This conclusion was confirmed by demonstrating that microperoxidase, hemin, and hematoheme also exert cytotoxic activity in the presence of hydrogen peroxide and iodide, the kinetics of which were identical to those obtained with the peroxidases. Fluoride, bromide, and thiocyanate could not replace iodide in any of these systems. These results indicate that the active site for the cytotoxic activity of the peroxidases is located within the heme moiety, whereas the protein portions of the enzymes affect the cytotoxic activity of the enzymes only in an indirect manner. We also tested a variety of compounds for their ability to inhibit the cytolytic reaction toward erythrocytes. We found that compounds such as thiourea, thionicotinamide, and uric acid are much more potent inhibitors of the cytolytic reaction than tyrosine and histidine. These observations support the concept that oxidative reactions rather than halogenation reactions are the primary cause of the peroxidase-mediated lysis of erythrocytes.


Subject(s)
Erythrocytes/metabolism , Heme/metabolism , Peroxidases/metabolism , Animals , Binding Sites , Hemolysis , Histidine/metabolism , Hot Temperature , Hydrogen Peroxide/pharmacology , Iodides/pharmacology , Iron/metabolism , Peroxidases/antagonists & inhibitors , Porphyrins/metabolism , Protein Denaturation , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...