Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
1.
Psychol Med ; : 1-10, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38287656

ABSTRACT

BACKGROUND: Research using latent variable models demonstrates that pre-attentive measures of early auditory processing (EAP) and cognition may initiate a cascading effect on daily functioning in schizophrenia. However, such models fail to account for relationships among individual measures of cognition and EAP, thereby limiting their utility. Hence, EAP and cognition may function as complementary and interacting measures of brain function rather than independent stages of information processing. Here, we apply a data-driven approach to identifying directional relationships among neurophysiologic and cognitive variables. METHODS: Using data from the Consortium on the Genetics of Schizophrenia 2, we estimated Gaussian Graphical Models and Bayesian networks to examine undirected and directed connections between measures of EAP, including mismatch negativity and P3a, and cognition in 663 outpatients with schizophrenia and 630 control participants. RESULTS: Chain structures emerged among EAP and attention/vigilance measures in schizophrenia and control groups. Concerning differences between the groups, object memory was an influential variable in schizophrenia upon which other cognitive domains depended, and working memory was an influential variable in controls. CONCLUSIONS: Measures of EAP and attention/vigilance are conditionally independent of other cognitive domains that were used in this study. Findings also revealed additional causal assumptions among measures of cognition that could help guide statistical control and ultimately help identify early-stage targets or surrogate endpoints in schizophrenia.

3.
JAMA Psychiatry ; 79(10): 1014-1022, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35976655

ABSTRACT

Importance: Improved understanding of the boundaries and connections between positive symptoms, negative symptoms, and role functioning in schizophrenia is critical, given limited empirical support for clear distinctions among these clinical areas. This study's use of network psychometrics to investigate differential associations and structural overlap between positive symptoms, negative symptoms, and functional domains in schizophrenia may contribute to such understanding. Objective: To apply network analysis and community detection methods to examine the interplay and structure of positive symptoms, negative symptoms, and functional domains in individuals with schizophrenia. Design, Setting, and Participants: Cross-sectional study in 5 geographically distributed research centers in the US as part of the Consortium on the Genetics of Schizophrenia-2 from July 1, 2010, through January 31, 2014. Data were analyzed from November 2021 to June 2022. Clinically stable outpatients with schizophrenia or schizoaffective disorder were included. Participants were excluded if they had evidence of neurologic or additional Axis I psychiatric disorders. Other exclusion criteria included head injury, stroke, and substance abuse. Of 1415 patients approached, 979 were included in the final analysis. Main Outcomes and Measures: Measures included the Scale for the Assessment of Positive Symptoms, the Scale for the Assessment of Negative Symptoms, and the Role Functioning Scale. Main outcomes were expected influence, which assesses the relative importance of items to the network and is defined as the association of an item with all others, and community detection and stability, defined as the presence of statistical clusters and their replicability. Results: Participants with complete data included 979 outpatients (mean [SD] age, 46 [11] years; 663 male [67.7%]; 390 participants [40%] self-identified as African American, 30 [3%] as Asian, 7 [0.7%] as Native American, 8 [0.8%] as Pacific Islander, 412 [42.1%] as White, 125 [12.8%] as more than 1 race, and 5 [0.5%] did not identify). Anhedonia had the highest expected influence in the most comprehensive network analysis, showing connections with negative and positive symptoms and functional domains. Positive symptoms had the lowest expected influence. Community detection analyses indicated the presence of 3 clusters corresponding to positive symptoms; negative symptoms and work functioning; functional domains, including independent living, family relationships, and social network; and avolition, anhedonia, and work functioning. Hallucinations and delusions replicated in 1000 bootstrapped samples (100%), while bizarre behavior and thought disorder replicated in 390 (39%) and 570 (57%), respectively. In contrast, negative symptoms and work functioning replicated between 730 (73%) and 770 (77%) samples, respectively, and the remaining functional domains in 940 samples (94%). Conclusions and Relevance: The high centrality of anhedonia and its connections with multiple functional domains suggest that it could be a treatment target for global functioning. Interventions for work functioning may benefit from a specialized approach that focuses primarily on avolition.


Subject(s)
Schizophrenia , Anhedonia , Cross-Sectional Studies , Humans , Male , Middle Aged , Psychometrics , Schizophrenia/drug therapy , Schizophrenic Psychology
5.
Am J Psychiatry ; 178(9): 838-847, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33985348

ABSTRACT

OBJECTIVE: Many psychotropic medications used to treat schizophrenia have significant anticholinergic properties, which are linked to cognitive impairment and dementia risk in healthy subjects. Clarifying the impact of cognitive impairment attributable to anticholinergic medication burden may help optimize cognitive outcomes in schizophrenia. The aim of this study was to comprehensively characterize how this burden affects functioning across multiple cognitive domains in schizophrenia outpatients. METHODS: Cross-sectional data were analyzed using inferential statistics and exploratory structural equation modeling to determine the relationship between anticholinergic medication burden and cognition. Patients with a diagnosis of schizophrenia or schizoaffective disorder (N=1,120) were recruited from the community at five U.S. universities as part of the Consortium on the Genetics of Schizophrenia-2. For each participant, prescribed medications were rated and summed according to a modified Anticholinergic Cognitive Burden (ACB) scale. Cognitive functioning was assessed by performance on domains of the Penn Computerized Neurocognitive Battery (PCNB). RESULTS: ACB score was significantly associated with cognitive performance, with higher ACB groups scoring worse than lower ACB groups on all domains tested on the PCNB. Similar effects were seen on other cognitive tests. Effects remained significant after controlling for demographic characteristics and potential proxies of illness severity, including clinical symptoms and chlorpromazine-equivalent antipsychotic dosage. CONCLUSIONS: Anticholinergic medication burden in schizophrenia is substantial, common, conferred by multiple medication classes, and associated with cognitive impairments across all cognitive domains. Anticholinergic medication burden from all medication classes-including psychotropics used in usual care-should be considered in treatment decisions and accounted for in studies of cognitive functioning in schizophrenia.


Subject(s)
Cholinergic Antagonists/adverse effects , Cognitive Dysfunction/chemically induced , Schizophrenia/drug therapy , Adolescent , Adult , Aged , Cholinergic Antagonists/therapeutic use , Cognition/drug effects , Cohort Studies , Cross-Sectional Studies , Humans , Middle Aged , Neuropsychological Tests , Schizophrenia/complications , Young Adult
6.
Schizophr Res ; 231: 73-81, 2021 05.
Article in English | MEDLINE | ID: mdl-33780847

ABSTRACT

BACKGROUND: Schizophrenia patients have abnormal electroencephalographic (EEG) power over multiple frequency bands, even at rest, though the primary neural generators and spatiotemporal dynamics of these abnormalities are largely unknown. Disturbances in the precise synchronization of oscillations within and across cortical sources may underlie abnormal resting-state EEG activity in schizophrenia patients. METHODS: A novel assessment method was applied to identify the independent contributing sources of resting-state EEG and assess the phase discontinuity in schizophrenia patients (N = 148) and healthy subjects (N = 143). RESULTS: A network of 11 primary contributing sources of scalp EEG was identified in both groups. Schizophrenia patients showed abnormal elevations of EEG power in the temporal region in the theta, beta, and gamma-bands, as well as the posterior cingulate gyrus in the delta, theta, alpha, and beta-bands. The higher theta-band power in the middle temporal gyrus was significantly correlated with verbal memory impairment in patients. The peak frequency of alpha was lower in patients in the cingulate and temporal regions. Furthermore, patients showed a higher rate of alpha phase discontinuity in the temporal region as well as a lower rate of theta phase discontinuity in the temporal and posterior cingulate regions. CONCLUSIONS: Abnormal rates of phase discontinuity of alpha- and theta-band, abnormal elevations of EEG power in multiple bands, and a lower peak frequency of alpha were identified in schizophrenia patients at rest. Clarification of the mechanistic substrates of abnormal phase discontinuity may clarify core pathophysiologic abnormalities of schizophrenia and contribute to the development of novel biomarkers for therapeutic interventions.


Subject(s)
Schizophrenia , Brain , Electroencephalography , Humans , Memory , Temporal Lobe
7.
Schizophr Res ; 228: 280-287, 2021 02.
Article in English | MEDLINE | ID: mdl-33493776

ABSTRACT

BACKGROUND: Schizophrenia patients show widespread deficits in neurocognitive, clinical, and psychosocial functioning. Mismatch negativity (MMN) and gamma-band auditory steady-state response (ASSR) are robust translational biomarkers associated with schizophrenia and associated with cognitive dysfunction, negative symptom severity, and psychosocial disability. Although these biomarkers are conceptually linked as measures of early auditory information processing, it is unclear whether MMN and gamma-band ASSR account for shared vs. non-shared variance in cognitive, clinical, and psychosocial functioning. METHODS: Multiple regression analyses with MMN, gamma-band ASSR, and clinical measures were performed in large cohorts of schizophrenia outpatients (N = 428) and healthy comparison subjects (N = 283). RESULTS: Reduced MMN (d = 0.67), gamma-band ASSR (d = -0.40), and lower cognitive function were confirmed in schizophrenia patients. Regression analyses revealed that reduced MMN amplitude showed unique associations with lower verbal learning and negative symptoms, reduced gamma-band ASSR showed a unique association with working memory deficits, and both reduced MMN amplitude and reduced gamma-band ASSR showed an association with daily functioning impairment in schizophrenia patients. CONCLUSION: MMN and ASSR measures are non-redundant and complementary measures of early auditory information processing that are associated with important domains of functioning. Studies are needed to clarify the neural substrates of MMN and gamma-band ASSR to improve our understanding of the pathophysiology of schizophrenia and accelerate their use in the development of novel therapeutic interventions.


Subject(s)
Schizophrenia , Acoustic Stimulation , Auditory Perception , Cognition , Electroencephalography , Evoked Potentials, Auditory , Humans , Memory, Short-Term , Schizophrenia/complications
8.
Article in English | MEDLINE | ID: mdl-33340619

ABSTRACT

Gamma-band (40-Hz) activity is critical for cortico-cortical transmission and the integration of information across neural networks during sensory and cognitive processing. Patients with schizophrenia show selective reductions in the capacity to support synchronized gamma-band oscillations in response to auditory stimulation presented 40-Hz. Despite widespread application of this 40-Hz auditory steady-state response (ASSR) as a translational electroencephalographic biomarker for therapeutic development for neuropsychiatric disorders, the spatiotemporal dynamics underlying the ASSR have not been fully characterized. In this study, a novel Granger causality analysis was applied to assess the propagation of gamma oscillations in response to 40-Hz steady-state stimulation across cortical sources in schizophrenia patients (n = 426) and healthy comparison subjects (n = 293). Both groups showed multiple ASSR source interactions that were broadly distributed across brain regions. Schizophrenia patients showed distinct, hierarchically sequenced connectivity abnormalities. During the response onset interval, patients exhibited abnormal increased connectivity from the inferior frontal gyrus to the superior temporal gyrus, followed by decreased connectivity from the superior temporal to the middle cingulate gyrus. In the later portion of the ASSR response (300-500 ms), patients showed significantly increased connectivity from the superior temporal to the middle frontal gyrus followed by decreased connectivity from the left superior frontal gyrus to the right superior and middle frontal gyri. These findings highlight both the orchestration of distributed multiple sources in response to simple gamma-frequency stimulation in healthy subjects as well as the patterns of deficits in the generation and maintenance of gamma-band oscillations across the temporo-frontal sources in schizophrenia patients.


Subject(s)
Acoustic Stimulation/methods , Auditory Cortex/physiopathology , Evoked Potentials, Auditory/physiology , Gamma Rhythm/physiology , Nerve Net/physiopathology , Schizophrenia/physiopathology , Adult , Auditory Cortex/diagnostic imaging , Cohort Studies , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Nerve Net/diagnostic imaging , Schizophrenia/diagnostic imaging
9.
Schizophr Bull ; 47(2): 373-385, 2021 03 16.
Article in English | MEDLINE | ID: mdl-32856089

ABSTRACT

Cognitive impairment is a hallmark of schizophrenia and a robust predictor of functional outcomes. Impairments are found in all phases of the illness and are only moderately attenuated by currently approved therapeutics. Neurophysiological indices of sensory discrimination (ie, mismatch negativity (MMN) and P3a amplitudes) and gamma-band auditory steady-state response (ASSR; power and phase locking) are translational biomarkers widely used in the development of novel therapeutics for neuropsychiatric disorders. It is unclear whether laboratory-based EEG measures add explanatory power to well-established models that use only cognitive, clinical, and functional outcome measures. Moreover, it is unclear if measures of sensory discrimination and gamma-band ASSR uniquely contribute to putative causal pathways linking sensory discrimination, neurocognition, negative symptoms, and functional outcomes in schizophrenia. To answer these questions, hierarchical associations among sensory processing, neurocognition, clinical symptoms, and functional outcomes were assessed via structural equation modeling in a large sample of schizophrenia patients (n = 695) and healthy comparison subjects (n = 503). The results showed that the neurophysiologic indices of sensory discrimination and gamma-band ASSR both significantly contribute to and yield unique hierarchical, "bottom-up" effects on neurocognition, symptoms, and functioning. Measures of sensory discrimination showed direct effects on neurocognition and negative symptoms, while gamma-band ASSR had a direct effect on neurocognition in patients. Continued investigation of the neural mechanisms underlying abnormal networks of MMN/P3a and gamma-band ASSR is needed to clarify the pathophysiology of schizophrenia and the development of novel therapeutic interventions.


Subject(s)
Cognitive Dysfunction/physiopathology , Discrimination, Psychological/physiology , Evoked Potentials, Auditory/physiology , Gamma Rhythm/physiology , Schizophrenia/physiopathology , Adult , Attention , Auditory Perception , Cognitive Dysfunction/etiology , Event-Related Potentials, P300/physiology , Humans , Schizophrenia/complications
10.
Schizophr Bull ; 47(2): 517-529, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33169155

ABSTRACT

BACKGROUND: Schizophrenia (SCZ) and bipolar disorder (BIP) are debilitating neuropsychiatric disorders, collectively affecting 2% of the world's population. Recognizing the major impact of these psychiatric disorders on the psychosocial function of more than 200 000 US Veterans, the Department of Veterans Affairs (VA) recently completed genotyping of more than 8000 veterans with SCZ and BIP in the Cooperative Studies Program (CSP) #572. METHODS: We performed genome-wide association studies (GWAS) in CSP #572 and benchmarked the predictive value of polygenic risk scores (PRS) constructed from published findings. We combined our results with available summary statistics from several recent GWAS, realizing the largest and most diverse studies of these disorders to date. RESULTS: Our primary GWAS uncovered new associations between CHD7 variants and SCZ, and novel BIP associations with variants in Sortilin Related VPS10 Domain Containing Receptor 3 (SORCS3) and downstream of PCDH11X. Combining our results with published summary statistics for SCZ yielded 39 novel susceptibility loci including CRHR1, and we identified 10 additional findings for BIP (28 326 cases and 90 570 controls). PRS trained on published GWAS were significantly associated with case-control status among European American (P < 10-30) and African American (P < .0005) participants in CSP #572. CONCLUSIONS: We have demonstrated that published findings for SCZ and BIP are robustly generalizable to a diverse cohort of US veterans. Leveraging available summary statistics from GWAS of global populations, we report 52 new susceptibility loci and improved fine-mapping resolution for dozens of previously reported associations.


Subject(s)
Bipolar Disorder/genetics , Genome-Wide Association Study , Schizophrenia/genetics , Veterans , Adult , Aged , Female , Humans , Male , Middle Aged , United States
11.
Front Psychiatry ; 11: 608154, 2020.
Article in English | MEDLINE | ID: mdl-33329160

ABSTRACT

Background: Patients with schizophrenia show abnormal spontaneous oscillatory activity in scalp-level electroencephalographic (EEG) responses across multiple frequency bands. While oscillations play an essential role in the transmission of information across neural networks, few studies have assessed the frequency-specific dynamics across cortical source networks at rest. Identification of the neural sources and their dynamic interactions may improve our understanding of core pathophysiologic abnormalities associated with the neuropsychiatric disorders. Methods: A novel multivector autoregressive modeling approach for assessing effective connectivity among cortical sources was developed and applied to resting-state EEG recordings obtained from n = 139 schizophrenia patients and n = 126 healthy comparison subjects. Results: Two primary abnormalities in resting-state networks were detected in schizophrenia patients. The first network involved the middle frontal and fusiform gyri and a region near the calcarine sulcus. The second network involved the cingulate gyrus and the Rolandic operculum (a region that includes the auditory cortex). Conclusions: Schizophrenia patients show widespread patterns of hyper-connectivity across a distributed network of the frontal, temporal, and occipital brain regions. Results highlight a novel approach for characterizing alterations in connectivity in the neuropsychiatric patient populations. Further mechanistic characterization of network functioning is needed to clarify the pathophysiology of neuropsychiatric and neurological diseases.

12.
Schizophr Res ; 224: 33-39, 2020 10.
Article in English | MEDLINE | ID: mdl-33189519

ABSTRACT

BACKGROUND: Latency of the acoustic startle reflex is the time from presentation of the startling stimulus until the response, and provides an index of neural processing speed. Schizophrenia subjects exhibit slowed latency compared to healthy controls. One prior publication reported significant heritability of latency. The current study was undertaken to replicate and extend this solitary finding in a larger cohort. METHODS: Schizophrenia probands, their relatives, and control subjects from the Consortium on the Genetics of Schizophrenia (COGS-1) were tested in a paradigm to ascertain magnitude, latency, and prepulse inhibition of startle. Trial types in the paradigm were: pulse-alone, and trials with 30, 60, or 120 ms between the prepulse and pulse. Comparisons of subject groups were conducted with ANCOVAs to assess startle latency and magnitude. Heritability of startle magnitude and latency was analyzed with a variance component method implemented in SOLAR v.4.3.1. RESULTS: 980 subjects had analyzable startle results: 199 schizophrenia probands, 456 of their relatives, and 325 controls. A mixed-design ANCOVA on startle latency in the four trial types was significant for subject group (F(2,973) = 4.45, p = 0.012) such that probands were slowest, relatives were intermediate and controls were fastest. Magnitude to pulse-alone trials differed significantly between groups by ANCOVA (F(2,974) = 3.92, p = 0.020) such that controls were lowest, probands highest, and relatives intermediate. Heritability was significant (p < 0.0001), with heritability of 34-41% for latency and 45-59% for magnitude. CONCLUSION: Both startle latency and magnitude are significantly heritable in the COGS-1 cohort. Startle latency is a strong candidate for being an endophenotype in schizophrenia.


Subject(s)
Schizophrenia , Acoustic Stimulation , Acoustics , Humans , Prepulse Inhibition , Reflex, Startle/genetics , Schizophrenia/genetics
13.
Transl Psychiatry ; 10(1): 405, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33230190

ABSTRACT

Cognitive impairments are pervasive and disabling features of schizophrenia. Targeted cognitive training (TCT) is a "bottom-up" cognitive remediation intervention with efficacy for neurocognitive outcomes in schizophrenia, yet individual responses are variable. Gamma oscillatory measures are leading candidate biomarkers in the development of biologically informed pro-cognitive therapeutics. Forty-two schizophrenia patients were recruited from a long-term residential treatment facility. Participants were randomized to receive either 1 h of cognitive training (TCT, n = 21) or computer games (TAU, n = 21). All participants received standard-of-care treatment; the TCT group additionally completed 30 h of cognitive training. The auditory steady-state response paradigm was used to elicit gamma oscillatory power and synchrony during electroencephalogram recordings. Detailed clinical and cognitive assessments were collected at baseline and after completion of the study. Baseline gamma power predicted cognitive gains after a full course of TCT (MCCB, R2 = 0.31). A change in gamma power after 1-h TCT exposure predicted improvement in both positive (SAPS, R2 = 0.40) and negative (SANS, R2 = 0.30) symptoms. These relationships were not observed in the TAU group (MCCB, SAPS, and SANS, all R2 < 0.06). The results indicate that the capacity to support gamma oscillations, as well as the plasticity of the underlying ASSR circuitry after acute exposure to 1 h of TCT, reflect neural mechanisms underlying the efficacy of TCT, and may be used to predict individualized treatment outcomes. These findings suggest that gamma oscillatory biomarkers applied within the context of experimental medicine designs can be used to personalize individual treatment options for pro-cognitive interventions in patients with schizophrenia.


Subject(s)
Cognition Disorders , Cognitive Dysfunction , Cognitive Remediation , Schizophrenia , Cognition , Cognitive Dysfunction/therapy , Humans , Schizophrenia/therapy
14.
Front Psychiatry ; 11: 832, 2020.
Article in English | MEDLINE | ID: mdl-33110410

ABSTRACT

BACKGROUND: Schizophrenia patients exhibit cognitive deficits across multiple domains, including verbal memory, working memory, and executive function, which substantially contribute to psychosocial disability. Gamma oscillations are associated with a wide range of cognitive operations, and are important for cortico-cortical transmission and the integration of information across neural networks. While previous reports have shown that schizophrenia patients have selective impairments in the ability to support gamma oscillations in response to 40-Hz auditory stimulation, it is unclear if patients show abnormalities in gamma power at rest, or whether resting-state activity in other frequency bands is associated with cognitive functioning in schizophrenia patients. METHODS: Resting-state electroencephalogram (EEG) was assessed over 3 min in 145 healthy comparison subjects and 157 schizophrenia patients. Single-word reading ability was measured via the reading subtest of the Wide Range Achievement Test-3 (WRAT). Auditory attention and working memory were evaluated using Letter-Number Span and Letter-Number Sequencing. Executive function was assessed via perseverative responses on the Wisconsin Card Sorting Test (WCST). Verbal learning performance was measured using the California Verbal Learning Test second edition (CVLT-II). RESULTS: Schizophrenia patients showed normal levels of delta-band power but abnormally elevated EEG power in theta, alpha, beta, and gamma bands. An exploratory correlation analysis showed a significant negative correlation of gamma-band power and verbal learning performance in schizophrenia patients. CONCLUSIONS: Patients with schizophrenia have abnormal resting-state EEG power across multiple frequency bands; gamma-band abnormalities were selectively and negatively associated with impairments in verbal learning. Resting-state gamma-band EEG power may be useful for understanding the pathophysiology of cognitive dysfunction and developing novel therapeutics in schizophrenia patients.

15.
Neuropsychopharmacology ; 45(13): 2198-2206, 2020 12.
Article in English | MEDLINE | ID: mdl-32829382

ABSTRACT

Synaptic interactions between parvalbumin-positive γ-aminobutyric acid (GABA)-ergic interneurons and pyramidal neurons evoke cortical gamma oscillations, which are known to be abnormal in schizophrenia. These cortical gamma oscillations can be indexed by the gamma-band auditory steady-state response (ASSR), a robust electroencephalographic (EEG) biomarker that is increasingly used to advance the development of novel therapeutics for schizophrenia, and other related brain disorders. Despite promise of ASSR, the neural substrates of ASSR have not yet been characterized. This study investigated the sources underlying ASSR in healthy subjects and schizophrenia patients. In this study, a novel method for noninvasively characterizing source locations was developed and applied to EEG recordings obtained from 293 healthy subjects and 427 schizophrenia patients who underwent ASSR testing. Results revealed a distributed network of temporal and frontal sources in both healthy subjects and schizophrenia patients. In both groups, primary contributing ASSR sources were identified in the right superior temporal cortex and the orbitofrontal cortex. In conjunction with normal activity in these areas, schizophrenia patients showed significantly reduced source dipole density of gamma-band ASSR (ITC > 0.25) in the left superior temporal cortex, orbitofrontal cortex, and left superior frontal cortex. In conclusion, a distributed network of temporal and frontal brain regions supports gamma phase synchronization. We demonstrated that failure to mount a coherent physiologic response to simple 40-Hz stimulation reflects disorganized network function in schizophrenia patients. Future translational studies are needed to more fully understand the neural mechanisms underlying gamma-band ASSR network abnormalities in schizophrenia.


Subject(s)
Auditory Cortex , Schizophrenia , Acoustic Stimulation , Electroencephalography , Evoked Potentials, Auditory , Humans
16.
Article in English | MEDLINE | ID: mdl-32830097

ABSTRACT

BACKGROUND: Auditory mismatch negativity (MMN) is a translatable event-related potential biomarker, and its reduction in schizophrenia is associated with the severity of clinical symptoms. While MMN recorded at the scalp is generated by a distributed network of temporofrontal neural sources, the primary contributing sources and the dynamic interactions among sources underlying MMN impairments in schizophrenia have not been previously characterized. METHODS: A novel data-driven analytic framework was applied to large cohorts of healthy comparison subjects (n = 449) and patients with schizophrenia (n = 589) to identify the independent contributing sources of MMN, characterize the patterns of effective connectivity underlying reduced MMN in patients, and explore the clinical significance of these abnormal source dynamics in schizophrenia. RESULTS: A network of 11 independent contributing sources underlying MMN distributed across temporofrontal cortices was identified. Orderly shifts in peak source activity were detected in a steplike manner, starting at temporal structures and progressing across frontal brain regions. MMN reduction in patients was predominantly associated with reduced contributions from 3 frontal midline sources: orbitofrontal, anterior cingulate, and middle cingulate cortices. Patients showed increased connectivity from temporal to prefrontal regions in conjunction with decreased cross-hemispheric connectivity to prefrontal regions. The decreased connectivity strength of precentral to prefrontal regions in patients with schizophrenia was associated with greater severity of negative symptoms. CONCLUSIONS: Alterations in the dynamic interactions among temporofrontal sources underlie MMN abnormalities in schizophrenia. These results advance our understanding of the neural substrates and temporal dynamics of normal and impaired information processing with novel applications for translatable biomarkers of neuropsychiatric disorders.


Subject(s)
Schizophrenia , Brain , Cerebral Cortex , Evoked Potentials , Frontal Lobe , Humans
17.
PLoS One ; 15(5): e0232855, 2020.
Article in English | MEDLINE | ID: mdl-32401791

ABSTRACT

Recently emerging evidence indicates accelerated age-related changes in the structure and function of the brain in schizophrenia, raising a question about its potential consequences on cognitive function. Using a large sample of schizophrenia patients and controls and a battery of tasks across multiple cognitive domains, we examined whether patients show accelerated age-related decline in cognition and whether an age-related effect differ between females and males. We utilized data of 1,415 schizophrenia patients and 1,062 healthy community collected by the second phase of the Consortium on the Genetics of Schizophrenia (COGS-2). A battery of cognitive tasks included the Letter-Number Span Task, two forms of the Continuous Performance Test, the California Verbal Learning Test, Second Edition, the Penn Emotion Identification Test and the Penn Facial Memory Test. The effect of age and gender on cognitive performance was examined with a general linear model. We observed age-related changes on most cognitive measures, which was similar between males and females. Compared to controls, patients showed greater deterioration in performance on attention/vigilance and greater slowness of processing social information with increasing age. However, controls showed greater age-related changes in working memory and verbal memory compared to patients. Age-related changes (η2p of 0.001 to .008) were much smaller than between-group differences (η2p of 0.005 to .037). This study found that patients showed continued decline of cognition on some domains but stable impairment or even less decline on other domains with increasing age. These findings indicate that age-related changes in cognition in schizophrenia are subtle and not uniform across multiple cognitive domains.


Subject(s)
Cognitive Dysfunction/psychology , Schizophrenic Psychology , Adult , Age Factors , Aged , Case-Control Studies , Female , Humans , Linear Models , Male , Memory, Short-Term , Middle Aged , Neuropsychological Tests , Sex Factors , Young Adult
18.
Am J Med Genet B Neuropsychiatr Genet ; 183(3): 181-194, 2020 04.
Article in English | MEDLINE | ID: mdl-31872970

ABSTRACT

Cognitive impairment is a frequent and serious problem in patients with various forms of severe mental illnesses (SMI), including schizophrenia (SZ) and bipolar disorder (BP). Recent research suggests genetic links to several cognitive phenotypes in both SMI and in the general population. Our goal in this study was to identify potential genomic signatures of cognitive functioning in veterans with severe mental illness and compare them to previous findings for cognition across different populations. Veterans Affairs (VA) Cooperative Studies Program (CSP) Study #572 evaluated cognitive and functional capacity measures among SZ and BP patients. In conjunction with the VA Million Veteran Program, 3,959 European American (1,095 SZ, 2,864 BP) and 2,601 African American (1,095 SZ, 2,864 BP) patients were genotyped using a custom Affymetrix Axiom Biobank array. We performed a genome-wide association study of global cognitive functioning, constructed polygenic scores for SZ and cognition in the general population, and examined genetic correlations with 2,626 UK Biobank traits. Although no single locus attained genome-wide significance, observed allelic effects were strongly consistent with previous studies. We observed robust associations between global cognitive functioning and polygenic scores for cognitive performance, intelligence, and SZ risk. We also identified significant genetic correlations with several cognition-related traits in UK Biobank. In a diverse cohort of U.S. veterans with SZ or BP, we demonstrate broad overlap of common genetic effects on cognition in the general population, and find that greater polygenic loading for SZ risk is associated with poorer cognitive performance.


Subject(s)
Bipolar Disorder/genetics , Cognition Disorders/genetics , Cognition , Genome-Wide Association Study , Schizophrenia/genetics , Adult , Aged , Alleles , Bipolar Disorder/physiopathology , Cognition Disorders/physiopathology , Female , Genotype , Humans , Male , Middle Aged , Neuropsychological Tests , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Schizophrenia/physiopathology , United States , United States Department of Veterans Affairs , Veterans
19.
Mol Psychiatry ; 25(10): 2455-2467, 2020 10.
Article in English | MEDLINE | ID: mdl-31591465

ABSTRACT

Schizophrenia is a common, chronic and debilitating neuropsychiatric syndrome affecting tens of millions of individuals worldwide. While rare genetic variants play a role in the etiology of schizophrenia, most of the currently explained liability is within common variation, suggesting that variation predating the human diaspora out of Africa harbors a large fraction of the common variant attributable heritability. However, common variant association studies in schizophrenia have concentrated mainly on cohorts of European descent. We describe genome-wide association studies of 6152 cases and 3918 controls of admixed African ancestry, and of 1234 cases and 3090 controls of Latino ancestry, representing the largest such study in these populations to date. Combining results from the samples with African ancestry with summary statistics from the Psychiatric Genomics Consortium (PGC) study of schizophrenia yielded seven newly genome-wide significant loci, and we identified an additional eight loci by incorporating the results from samples with Latino ancestry. Leveraging population differences in patterns of linkage disequilibrium, we achieve improved fine-mapping resolution at 22 previously reported and 4 newly significant loci. Polygenic risk score profiling revealed improved prediction based on trans-ancestry meta-analysis results for admixed African (Nagelkerke's R2 = 0.032; liability R2 = 0.017; P < 10-52), Latino (Nagelkerke's R2 = 0.089; liability R2 = 0.021; P < 10-58), and European individuals (Nagelkerke's R2 = 0.089; liability R2 = 0.037; P < 10-113), further highlighting the advantages of incorporating data from diverse human populations.


Subject(s)
Black People/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Hispanic or Latino/genetics , Schizophrenia/genetics , Female , Genetic Loci , Humans , Male , Polymorphism, Single Nucleotide/genetics
20.
JAMA Psychiatry ; 76(12): 1274-1284, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31596458

ABSTRACT

Importance: The Consortium on the Genetics of Schizophrenia (COGS) uses quantitative neurophysiological and neurocognitive endophenotypes with demonstrated deficits in schizophrenia as a platform from which to explore the underlying neural circuitry and genetic architecture. Many of these endophenotypes are associated with poor functional outcome in schizophrenia. Some are also endorsed as potential treatment targets by the US Food and Drug Administration. Objective: To build on prior assessments of heritability, association, and linkage in the COGS phase 1 (COGS-1) families by reporting a genome-wide association study (GWAS) of 11 schizophrenia-related endophenotypes in the independent phase 2 (COGS-2) cohort of patients with schizophrenia and healthy comparison participants (HCPs). Design, Setting, and Participants: A total of 1789 patients with schizophrenia and HCPs of self-reported European or Latino ancestry were recruited through a collaborative effort across the COGS sites and genotyped using the PsychChip. Standard quality control filters were applied, and more than 6.2 million variants with a genotyping call rate of greater than 0.99 were available after imputation. Association was performed for data sets stratified by diagnosis and ancestry using linear regression and adjusting for age, sex, and 5 principal components, with results combined through weighted meta-analysis. Data for COGS-1 were collected from January 6, 2003, to August 6, 2008; data for COGS-2, from June 30, 2010, to February 14, 2014. Data were analyzed from October 28, 2016, to May 4, 2018. Main Outcomes and Measures: A genome-wide association study was performed to evaluate association for 11 neurophysiological and neurocognitive endophenotypes targeting key domains of schizophrenia related to inhibition, attention, vigilance, learning, working memory, executive function, episodic memory, and social cognition. Results: The final sample of 1533 participants included 861 male participants (56.2%), and the mean (SD) age was 41.8 (13.6) years. In total, 7 genome-wide significant regions (P < 5 × 10-8) and 2 nearly significant regions (P < 9 × 10-8) containing several genes of interest, including NRG3 and HCN1, were identified for 7 endophenotypes. For each of the 11 endophenotypes, enrichment analyses performed at the level of P < 10-4 compared favorably with previous association results in the COGS-1 families and showed extensive overlap with regions identified for schizophrenia diagnosis. Conclusions and Relevance: These analyses identified several genomic regions of interest that require further exploration and validation. These data seem to demonstrate the utility of endophenotypes for resolving the genetic architecture of schizophrenia and characterizing the underlying biological dysfunctions. Understanding the molecular basis of these endophenotypes may help to identify novel treatment targets and pave the way for precision-based medicine in schizophrenia and related psychotic disorders.


Subject(s)
Cognitive Dysfunction/physiopathology , Endophenotypes , Genome-Wide Association Study , Schizophrenia/genetics , Schizophrenia/physiopathology , Adult , Cognitive Dysfunction/etiology , Female , Genome-Wide Association Study/standards , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Male , Middle Aged , Neuregulins/genetics , Potassium Channels/genetics , Schizophrenia/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...