Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cold Spring Harb Protoc ; 2016(5)2016 05 02.
Article in English | MEDLINE | ID: mdl-27140916

ABSTRACT

This protocol outlines a general approach for characterizing the protospacer-adjacent motifs (PAMs) of Cas9 orthologs. It uses a three-plasmid system: One plasmid carries Cas9 and its tracrRNA, a second targeting vector contains the spacer and repeat, and the third plasmid encodes the targeted sequence (as the protospacer) with varying PAM sequences. It leverages the Cas9 nuclease activity to cleave and destroy plasmids that bear a compatible PAM. The level of depletion of a library of targeted plasmids after Cas9-mediated selection can then be assessed by deep sequencing to reveal candidate PAMs for downstream validation.


Subject(s)
Endonucleases/genetics , Endonucleases/metabolism , Genetic Testing , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Plasmids , Selection, Genetic , Sequence Analysis, DNA
2.
Cold Spring Harb Protoc ; 2016(5)2016 05 02.
Article in English | MEDLINE | ID: mdl-27140923

ABSTRACT

In light of the multitude of new Cas9-mediated functionalities, the ability to carry out multiple Cas9-enabled processes simultaneously and in a single cell is becoming increasingly valuable. Accomplishing this aim requires a set of Cas9-guide RNA (gRNA) pairings that are functionally independent and insulated from one another. For instance, two such protein-gRNA complexes would allow for concurrent activation and editing at independent target sites in the same cell. The problem of establishing orthogonal CRISPR systems can be decomposed into three stages. First, putatively orthogonal systems must be identified with an emphasis on minimizing sequence similarity of the Cas9 protein and its associated RNAs. Second, the systems must be characterized well enough to effectively express and target the systems using gRNAs. Third, the systems should be established as orthogonal to one another by testing for activity and cross talk. Here, we describe the value of these orthogonal CRISPR systems, outline steps for selecting and characterizing potentially orthogonal Cas9-gRNA pairs, and discuss considerations for the desired specificity in Cas9-coupled functions.


Subject(s)
CRISPR-Cas Systems , Endonucleases/genetics , Endonucleases/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism
3.
Mol Syst Biol ; 11(3): 788, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26148351

ABSTRACT

Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Population dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.


Subject(s)
Bacteroides/genetics , Gastrointestinal Tract/microbiology , Metagenomics/methods , Sequence Analysis, DNA/methods , Animals , Bacteroides/growth & development , Genetic Fitness , Genome, Bacterial , Genomic Library , Mice
4.
Nat Methods ; 12(4): 326-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25730490

ABSTRACT

The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However, modest levels of gene activation have limited potential applications. We describe an improved transcriptional regulator obtained through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to nuclease-null Cas9. We demonstrate its utility in activating endogenous coding and noncoding genes, targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).


Subject(s)
Endonucleases , Genetic Techniques , RNA, Guide, Kinetoplastida , Transcriptional Activation , Cell Differentiation/genetics , Endonucleases/genetics , HEK293 Cells , Humans , Induced Pluripotent Stem Cells , Neurons/cytology , Staphylococcus aureus
5.
Nat Methods ; 10(11): 1116-21, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24076762

ABSTRACT

The Cas9 protein from the Streptococcus pyogenes CRISPR-Cas acquired immune system has been adapted for both RNA-guided genome editing and gene regulation in a variety of organisms, but it can mediate only a single activity at a time within any given cell. Here we characterize a set of fully orthogonal Cas9 proteins and demonstrate their ability to mediate simultaneous and independently targeted gene regulation and editing in bacteria and in human cells. We find that Cas9 orthologs display consistent patterns in their recognition of target sequences, and we identify an unexpectedly versatile Cas9 protein from Neisseria meningitidis. We provide a basal set of orthogonal RNA-guided proteins for controlling biological systems and establish a general methodology for characterizing additional proteins.


Subject(s)
Bacterial Proteins/physiology , Gene Expression Regulation , RNA Editing , RNA/genetics , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Molecular Sequence Data , Sequence Homology, Amino Acid , Streptomyces/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...