Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Appl Biochem Biotechnol ; 195(8): 4965-4982, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37119502

ABSTRACT

Natural pigments are components very important in the dye industry. The betalains are pigments found in plants from Caryophyllales order and are relevant in the food manufacturing. The main source of betalains is beetroot, which has unfavorable aftertaste. Therefore, the demand for alternative species producing betalains has increased. Elicitor molecules such as methyl jasmonate (MeJA) induce metabolic reprogramming acting in the biosynthesis of specialized metabolites and can enhance pigment concentrations. Here, we used this strategy to identify if treatment with MeJA at 100 µM can promote the accumulation of betalains and other bioactive compounds in Alternanthera philoxeroides and Alternanthera sessilis. We performed the gene expression, concentration of betalains, phenols, flavonoids, amino acids (phenylalanine and tyrosine), and antioxidant activity. The results showed that MeJA treatment increased betalains and other bioactive compounds in the two Alternanthera species but A. sessilis had a better performance. One key factor in this pathway is related to the phenylalanine and tyrosine concentration. However, the species have distinct metabolic regulation: in A. philoxeroides, high concentrations of betalain pigments increase the tyrosine concentration and gene expression (include ADH) under MeJA and in A. sessilis, high concentrations of betalain pigments reduce the gene expression and tyrosine concentration after 2 days under MeJA. This study brings new questions about betalain biosynthesis and sheds light on the evolution of this pathway in Caryophyllales.


Subject(s)
Amaranthaceae , Betalains , Pigments, Biological , Amaranthaceae/genetics , Amaranthaceae/metabolism , Betalains/biosynthesis , Pigments, Biological/analysis , Phenylalanine , Tyrosine , Metabolic Networks and Pathways , Gene Expression Regulation, Plant , Flavonoids/analysis , Phenols/analysis , Antioxidants/analysis
2.
Plant Physiol Biochem ; 169: 49-62, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34753074

ABSTRACT

Drought is one of the major threats for crop plants among them rice, worldwide. The effects of drought vary depending on the plant growth phase and the occurrence of a previous stress, which can leave a memory of the stress. Stomata guard cells perform many essential functions and are highly responsive to hormonal and environmental stimuli. Therefore, information on how guard cells respond to drought might be useful for selecting drought tolerant plants. In this work, physiological analysis, comparative proteomics, gene expression and 5 - methylcytosine (%) analysis were used to elucidate the effects of drought in single stress event at vegetative or reproductive stage or recurrent at both stages in guard cells from rice plants. Photosynthesis and stomatal conductance decreased when drought was applied at reproductive stage in single and recurrent event. Twelve drought-responsive proteins were identified, belonging to photosynthesis pathway, response to oxidative stress, stress signalling and others. The expression of their encoding genes showed a positive relation with the protein abundance. Drought stress increased the total DNA methylation when applied at vegetative stage in single (35%) and recurrent event (18%) and decreased it in plants stressed at reproductive stage (9.8%), with respect to the levels measured in well-watered ones (13.84%). In conclusion, a first drought event seems to induce adaptation to water-deficit conditions through decreasing energy dissipation, increasing ATP energy provision, reducing oxidative damage in GC. Furthermore, the stress memory is associated with epigenetic markers.


Subject(s)
Droughts , Oryza , DNA , Gene Expression Regulation, Plant , Genomic Instability , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Proteome , Stress, Physiological
3.
Plant Sci ; 311: 110994, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34482907

ABSTRACT

Drought is a pivotal cause for crop yield reductions. When subjected to recurrent external stimuli, plants can develop memory of stress responses that, eventually, enables improved plant tolerance to environmental changes. In addition, despite causal relationships, these responses may vary according to hierarchical levels of observation. Thus, this study aims to check the responses of recurrent and non-recurrent stresses in two rice genotypes observing their drought memory responses at different levels of organization, that is, on a physiological, biochemical and metabolomic scale and for end in global PCA. For this, seventy variables were measured on the scales described in order to obtain a large number of observations. The memory responses were evident in almost all scales observed. The lowland genotype, especially plants not subjected to recurrent water shortage, showed higher damage to the photosynthetic apparatus under drought conditions, although it has exhibited more evident memory response effect after rehydration. On the other hand, the upland genotype appears to be more tolerant to drought insofar lower biochemical damage was observed. Specific behaviors of each genotype at biochemical and metabolomics levels and similar behavior at physiological level were observed. This study demonstrates the importance of observation at different hierarchical levels.


Subject(s)
Adaptation, Physiological/genetics , Dehydration/genetics , Dehydration/physiopathology , Droughts , Oryza/genetics , Oryza/physiology , Water/metabolism , Brazil , Crops, Agricultural/genetics , Crops, Agricultural/physiology , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Stress, Physiological/genetics
4.
Physiol Plant ; 172(2): 304-316, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32421869

ABSTRACT

Drought is the main constrain for crops worldwide, however, the effects of recurrent water deficit remain still hidden. We analysed two rice genotypes, 'BRS-Querência' (lowlands) and 'AN-Cambará' (uplands), after 7 days of recurrent drought followed by 24 h of rehydration, hypothesising that genotypes grown in regions with different water availabilities respond differently to water deficits, and that a previous exposure to stress could alter abscisic acid (ABA) metabolism. The results showed that both genotypes reduced stomatal conductance and increased ABA concentration. After rehydration, the ABA levels decreased, mainly in the plants of BRS-Querência subjected to recurrent stress. However, the levels of ABA were higher in plants in recurrent water deficit compared to non-recurrent stress plants in both genotypes. Remarkably in the lowland genotype, the ABA glucosyl-ester (ABA-GE) concentration increased after recovery in the plants under recurrent stress. Regarding of gene expression, the genes associated in ABA biosynthesis with the highest expression levels were NCED2, NCED3, NCED4 and AAO2. However, 'AN-Cambará' showed less transcriptional activation. Taking into account the genes involved in ABA catabolism, ABAH1 appears to play an important role related to the recurrent stress in upland plants. These results indicate that one of the factors that can promote greater tolerance for the upland genotype is the tradeoff between ABA and ABA-GE when plants are subjected to water deficits. In addition, they indicate that abscisic acid metabolism is altered due to the genotype (upland or lowland) and pre-exposure to stress can also modify adaptive responses in rice varieties (recurrent stress).


Subject(s)
Abscisic Acid , Oryza , Droughts , Gene Expression Regulation, Plant , Genotype , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological , Water/metabolism
5.
Planta ; 251(6): 111, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32474838

ABSTRACT

MAIN CONCLUSION: A first salt shock event alters transcriptional and physiological responses to a second event, being possible to identify 26 genes associated with long-term memory. Soil salinity significantly affects rice cultivation, resulting in large losses in growth and productivity. Studies report that a disturbing event can prepare the plant for a subsequent event through memory acquisition, involving physiological and molecular processes. Therefore, genes that provide altered responses in subsequent events define a category known as "memory genes". In this work, the RNA-sequencing (RNA-Seq) technique was used to analyse the transcriptional profile of rice plants subjected to different salt shock events and to characterise genes associated with long-term memory. Plants subjected to recurrent salt shock showed differences in stomatal conductance, chlorophyll index, electrolyte leakage, and the number of differentially expressed genes (DEGs), and they had lower Na+/K+ ratios than plants that experienced only one stress event. Additionally, the mammalian target of rapamycin (mTOR) pathways, and carbohydrate and amino acid-associated pathways were altered under all conditions. Memory genes can be classified according to their responses during the first event (+ or -) and the second shock event (+ or -), being possible to observe a larger number of transcripts for groups [+ /-] and [-/ +], genes characterised as "revised response." This is the first long-term transcriptional memory study in rice plants under salt shock, providing new insights into the process of plant memory acquisition.


Subject(s)
Oryza/physiology , Sodium Chloride/pharmacology , Stress, Physiological , Gene Expression Profiling , Oryza/genetics , Salinity , Sequence Analysis, RNA , Time Factors
6.
Physiol Plant ; 170(2): 248-268, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32515828

ABSTRACT

Plants are constantly exposed to environmental fluctuations, that may occur in a single day or over longer periods. In many cases, abiotic stresses are transient and recurrent, impacting how plants respond in subsequent adverse conditions. Adaptation mechanisms may occur at the physiological, biochemical and molecular level, modifying transcriptional response, regulatory proteins, epigenetic marks or metabolites. Here, we aimed to uncover the different strategies that rice uses to respond to recurrent stress. We tested varieties with contrasting behavior towards salinity (tolerance or sensitivity) and imposed salt stress (150 mM NaCl) during 48 h at vegetative and/or reproductive stages. After 48 h of stress in reproductive stage, leaves and roots were harvested separately or otherwise the plants were submitted to a 24 h recovery, prior to sample harvesting. Plants submitted to a recurrent stress responded differently from those suffering a single stress event. In the case of the sensitive genotype, recurrent stress led to lower Na/K ratio in roots and lower hydrogen peroxide accumulation and lipid peroxidation in leaves, but maintenance of global DNA methylation levels. In the tolerant genotype, recurrent stress did neither affect the Na/K ratio nor the stomatal conductance, although the levels of superoxide anion and hydrogen peroxide accumulation were lower, as also observed for global levels of DNA methylation. Our work shows that a short pre-exposure to salt stress may improve rice tolerance to subsequent stress, trough biochemical, physiological and epigenetic processes, with more significant changes visible in the tolerant genotype.


Subject(s)
Oryza/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant , Genotype , Salinity , Stress, Physiological
7.
PLoS One ; 14(6): e0218019, 2019.
Article in English | MEDLINE | ID: mdl-31181089

ABSTRACT

Due to its tropical origin and adaptation, rice is significantly impacted by cold stress, and consequently sustains large losses in growth and productivity. Currently, rice is the second most consumed cereal in the world and production losses caused by extreme temperature events in the context of "major climatic changes" can have major impacts on the world economy. We report here an analysis of rice genotypes in response to low-temperature stress, studied through physiological gas-exchange parameters, biochemical changes in photosynthetic pigments and antioxidants, and at the level of gene and protein expression, towards an understanding and identification of multiple low-temperature tolerance mechanisms. The first effects of cold stress were observed on photosynthesis among all genotypes. However, the tropical japonica genotypes Secano do Brazil and Cypress had a greater reduction in gas exchange parameters like photosynthesis and water use efficiency in comparison to the temperate japonica Nipponbare and M202 genotypes. The analysis of biochemical profiles showed that despite the impacts of low temperature on tolerant plants, they quickly adjusted to maintain their cellular homeostasis by an accumulation of antioxidants and osmolytes like phenolic compounds and proline. The cold tolerant and sensitive genotypes showed a clear difference in gene expression at the transcript level for OsGH3-2, OsSRO1a, OsZFP245, and OsTPP1, as well as for expression at the protein level for LRR-RLKs, bHLH, GLYI, and LTP1 proteins. This study exemplifies the cold tolerant features of the temperate japonica Nipponbare and M202 genotypes, as observed through the analysis of physiological and biochemical responses and the associated changes in gene and protein expression patterns. The genes and proteins showing differential expression response are notable candidates towards understanding the biological pathways affected in rice and for engineering cold tolerance, to generate cultivars capable of maintaining growth, development, and reproduction under cold stress. We also propose that the mechanisms of action of the genes analyzed are associated with the tolerance response.


Subject(s)
Cold-Shock Response/genetics , Cold-Shock Response/physiology , Oryza/genetics , Adaptation, Physiological/genetics , Cold Temperature/adverse effects , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Genotype , Plant Proteins/genetics , Transcriptome/genetics
8.
Plant Signal Behav ; 14(4): e1581557, 2019.
Article in English | MEDLINE | ID: mdl-30806155

ABSTRACT

Rice growth and productivity is adversely affected by low-temperature stress. From a previous screen of diverse rice genotypes for cold tolerance parameters at the vegetative stage, we selected the tolerant Nipponbare and M202 genotypes and sensitive Cypress and Secano do Brazil genotypes for further analysis at the reproductive stage for physiological and yield parameters. Cold stress severely affected grain yield as estimated by the number of grain per panicle, panicle length, and 100 seed weight. Analysis of gene expression of 21 genes involved in physiological responses to low temperature tested, in the flag leaf and inflorescence tissue of these genotypes, showed an increased expression of the Lipid Transfer Protein genes LTP7 and LTP10 in flag leaf tissue of the tolerant Nipponbare and M202, along with a significant increase in the relative expression of stress-responsive transcription factors (TFs) and cold-inducible genes. In flag leaf tissue OsNAC9, OsNAC10 and OsNAP genes showed high correlation with photosynthesis, stomatal conductance, transpiration and Quantum Efficiency of PSII. In consequence of the foregoing results, we conclude that Nipponbare and M202 are cold tolerant genotypes and that LTP7, LTP10, OsNAC9, OsNAC10 and OsNAP genes can be used as markers in screening for cold tolerance at the reproductive stage. Furthermore based on the results we propose a model of low-temperature tolerance mechanism of how stress is perceived, and how the signal cascade acts to promote tolerance at below-ideal temperatures.


Subject(s)
Carrier Proteins/metabolism , Cold Temperature , Oryza , Gene Expression Regulation, Plant , Genotype , Oryza/genetics , Oryza/metabolism , Plant Leaves/metabolism , Plant Proteins/metabolism , Seedlings/metabolism , Seeds/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolism
9.
Physiol Mol Biol Plants ; 24(5): 767-779, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30150853

ABSTRACT

Stevia rebaudiana is an important source of natural steviol glycosides and is of increasing interest in various fields of study. Therefore, understanding the molecular processes regulating its metabolism is of great importance. In this study, the stability of seven reference genes (18S ribosomal RNA, Actin, Aquaporin, Calmodulin, Eukaryote elongation factor 1-α, Malate dehydrogenase, and Ubiquitin) under the effect of three stress-related elicitors (methyl jasmonate, salicylic acid, and spermidine) was evaluated in stevia plants. We used RefFinder software, which makes use of the four main currently available algorithms for reference gene selection: geNorm, NormFinder, BestKeeper, and the Comparative ∆Ct method. The results indicated that Ubiquitin and Actin can be used as reference genes under all tested experimental conditions. The genes, 18S ribosomal RNA, traditionally used as a reference gene, along with Calmodulin, showed the lowest stability. The expression of Deoxyxylulose-5-phosphate synthase and Kaurenoic acid hydroxylase genes was used to confirm the validated reference genes, showing that inadequacy of the reference gene may lead to erroneous results. This is the first study on the stability of reference genes in Stevia rebaudiana plants, and is of great relevance for further analysis of the gene expression of the steviol glycoside biosynthetic pathway.

10.
Physiol Mol Biol Plants ; 23(4): 865-875, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29158635

ABSTRACT

The rice cultivar (Oryza sativa L.) BRS AG, developed by Embrapa Clima Temperado, is the first cultivar designed for purposes other than human consumption. It may be used in ethanol production and animal feed. Different abiotic stresses negatively affect plant growth. Soil salinity is responsible for a serious reduction in productivity. Therefore, the objective of this study was to evaluate the gene expression and the activity of antioxidant enzymes (SOD, CAT, APX and GR) and identify their functions in controlling ROS levels in rice plants, cultivar BRS AG, after a saline stress period. The plants were grown in vitro with two NaCl concentrations (0 and 136 mM), collected at 10, 15 and 20 days of cultivation. The results indicated that the activity of the enzymes evaluated promotes protection against oxidative stress. Although, there was an increase of reactive oxygen species, there was no increase in MDA levels. Regarding genes encoding isoforms of antioxidant enzymes, it was observed that OsSOD3-CU/Zn, OsSOD2-Cu/Zn, OsSOD-Cu/Zn, OsSOD4-Cu/Zn, OsSODCc1-Cu/Zn, OsSOD-Fe, OsAPX1, OsCATB and OsGR2 were the most responsive. The increase in the transcription of all genes among evaluated isoforms, except for OsAPX6, which remained stable, contributed to the increase or the maintenance of enzyme activity. Thus, it is possible to infer that the cv. BRS AG has defense mechanisms against salt stress.

11.
Planta ; 246(5): 899-914, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28702689

ABSTRACT

MAIN CONCLUSION: The set of variables analyzed as integrated by multivariate analysis of principal components consistently showed a memory effect induced by the drought pre-treatment in AN Cambará plants. The effects of drought can vary ddepending on many factors. Among these the occurrence of a previous water stress may leave a residual effect (memory), influencing the future performance of a plant in response to a new drought event. This study tested the hypothesis that plants experiencing recurrent drought would show more active mechanisms of water deficit tolerance, mainly plants of the genotype that is cultivated often experiencing water shortages periods. Additionally, all the plants subjected to water deficit were rehydrated by 24 h and the expression of transcription factors related to drought responses was re-evaluated. To this end, the water status of two rice genotypes, BRS Querência (flooded) and AN Cambará (dryland), was evaluated to identify molecular alterations likely underpinning drought-memory. In growth stage V5, some plants were exposed to water stress (10% VWC soil moisture-pre-treatment). Thereafter, the pots were rehydrated at the same level as the control pots and maintained under this condition until drought was reapplied (10% VWC) at the reproductive stage (R1-R2). Then, the plants were rehydrated and maintained at pot capacity for 24 h. Overall, the set of variables analyzed integrally by multivariate analysis of principal components consistently showed a memory effect induced by the drought pre-treatment in AN Cambará plants (the dryland genotype). This conclusion, based on data of the biochemical and molecular analyses, was supported by the greater capacity of maintenance of the water status by stomatal regulation of the pre-treated and rehydrated plants after the second drought stimulus.


Subject(s)
Gene Expression Regulation, Plant , Oryza/physiology , Stress, Physiological , Antioxidants/metabolism , Dehydration , Droughts , Gene Expression Profiling , Genotype , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/genetics , Plant Stomata/physiology , Proline/metabolism , Soil , Water/physiology
12.
Acta sci., Biol. sci ; 39(3): 381-388, July-Sept. 2017. tab, ilus
Article in English | LILACS | ID: biblio-860005

ABSTRACT

Among the compounds produced by plants, pigments such as betalains have received attention from both food and pharmaceuticals industries. The Alternanthera sessilis species produces these pigments, though in small quantities, and so it is necessary to increase production. Thus, many studies use elicitors that are capable of triggering physiological or morphological responses in plants. The objective was to establish callus production in A. sessilis grown under different combinations of growth regulators and light qualities and to assess whether these factors can increase betalain and flavonoid production. Leaf and internodal explants in MS medium with different growth regulators were used to obtain calli, which were subsequently transferred to a betacyanin induction medium remaining for 40 days under different light qualities (white, blue, red, and dark). The most suitable treatment for callus formation and subsequent betalain and flavonoid induction was to combine a medium containing 6.7 µmol L-1 2,4-D and 9.0 µmol L-1 BAP and blue light. Physical elicitation by light combined with appropriate concentration of growth regulators on calli can increase production of commercially important metabolites.


Dentre os compostos produzidos pelas plantas, os pigmentos, como as betalaínas, vêm recebendo destaque tanto pela indústria alimentícia como farmacêutica. A espécie Alternanthera sessilis produz esses pigmentos, porém em pequenas quantidades, sendo necessário incrementar a produção. Para isso, muitos estudos utilizam elicitores que são capazes de desencadear respostas fisiológicas ou morfológicas nas plantas. O objetivo do trabalho foi estabelecer a produção de calos de A. sessilis crescidos quando submetidos a diferentes combinações de reguladores de crescimento e qualidades de luz, e avaliar se esses fatores são capazes de incrementar a produção de betalaínas e flavonoides. Foram utilizados explantes foliares e internodais em meio MS com diferentes reguladores de crescimento para obtenção dos calos que, posteriormente, foram transferidos para meio de indução de betacianina, onde permaneceram por 30 dias sob diferentes qualidades de luz (branca, azul, vermelha e escuro). O tratamento mais propício para formação de calos e consequente indução de betalaínas e flavonoides foi a combinação do meio contendo 6,7 µmol L-1 2,4-D e 9,0 µmol L-1 BAP e a luz azul. Conclui-se que a elicitação física pela luz em conjunto com a concentração adequada de reguladores de crescimento em calos é capaz de incrementar a produção de metabólitos de interesse comercial.


Subject(s)
Betalains , Flavonoids , Plants, Medicinal
13.
Funct Plant Biol ; 44(4): 419-429, 2017 Apr.
Article in English | MEDLINE | ID: mdl-32480575

ABSTRACT

Rice (Oryza sativa L.) is one of the most important species for food production worldwide, besides being an excellent genetic model among the grasses. Cold is one of the major abiotic factors reducing rice yield, primarily affecting germination and reproduction phases. Currently, the RNAseq technique allows the identification of differential expressed genes in response to a given treatment, such as cold stress. In the present work, a transcriptome (RNAseq) analysis was performed in the V3 phase for contrasting genotypes Oro (tolerant) and Tio Taka (sensitive), in response to cold (13°C). A total of 241 and 244M readings were obtained, resulting in the alignment of 25.703 and 26.963 genes in genotypes Oro and Tio Taka respectively. The analyses revealed 259 and 5579 differential expressed genes in response to cold in the genotypes Oro and Tio Taka respectively. Ontology classes with larger changes were metabolic process ~27%, cellular process ~21%, binding ~30% and catalytic activity ~22%. In the genotype Oro, 141 unique genes were identified, 118 were common between Oro and Tio Taka and 5461 were unique to Tio Taka. Genes involved in metabolic routes of signal transduction, phytohormones, antioxidant system and biotic stress were identified. These results provide an understanding that breeding for a quantitative trait, such as cold tolerance at germination, several gene loci must be simultaneously selected. In general, few genes were identified, but it was not possible to associate only one gene function as responsible for the cultivar tolerance; since different genes from different metabolic routes were identified. The genes described in the present work will be useful for future investigations and for the detailed validation in marker assisted selection projects for cold tolerance in the germination of rice.

14.
J Appl Genet ; 58(2): 163-177, 2017 May.
Article in English | MEDLINE | ID: mdl-27878453

ABSTRACT

Many studies use strategies that allow for the identification of a large number of genes expressed in response to different stress conditions to which the plant is subjected throughout its cycle. In order to obtain accurate and reliable results in gene expression studies, it is necessary to use reference genes, which must have uniform expression in the majority of cells in the organism studied. RNA isolation of leaves and expression analysis in real-time quantitative polymerase chain reaction (RT-qPCR) were carried out. In this study, nine candidate reference genes were tested, actin 11 (ACT11), ubiquitin conjugated to E2 enzyme (UBC-E2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta tubulin (ß-tubulin), eukaryotic initiation factor 4α (eIF-4α), ubiquitin 10 (UBQ10), ubiquitin 5 (UBQ5), aquaporin TIP41 (TIP41-Like) and cyclophilin, in two genotypes of rice, AN Cambará and BRS Querência, with different levels of soil moisture (20%, 10% and recovery) in the vegetative (V5) and reproductive stages (period preceding flowering). Currently, there are different softwares that perform stability analyses and define the most suitable reference genes for a particular study. In this study, we used five different methods: geNorm, BestKeeper, ΔCt method, NormFinder and RefFinder. The results indicate that UBC-E2 and UBQ5 can be used as reference genes in all samples and softwares evaluated. The genes ß-tubulin and eIF-4α, traditionally used as reference genes, along with GAPDH, presented lower stability values. The gene expression of basic leucine zipper (bZIP23 and bZIP72) was used to validate the selected reference genes, demonstrating that the use of an inappropriate reference can induce erroneous results.


Subject(s)
Genes, Plant , Oryza/genetics , Water/physiology , Gene Expression Regulation, Plant , Genotype , Oryza/physiology , RNA, Plant/genetics , Real-Time Polymerase Chain Reaction , Reference Standards , Software
15.
Funct Integr Genomics ; 16(5): 567-79, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27468828

ABSTRACT

Abiotic stresses such as salinity, iron toxicity, and low temperatures are the main limiting factors of rice (Oryza sativa L.) yield. The elucidation of the genes involved in responses to these stresses is extremely important to understand the mechanisms that confer tolerance, as well as for the development of cultivars adapted to these conditions. In this study, the RNA-seq technique was used to compare the transcriptional profile of rice leaves (cv. BRS Querência) in stage V3, exposed to cold, iron, and salt stresses for 24 h. A range of 41 to 51 million reads was aligned, in which a total range of 88.47 to 89.21 % was mapped in the reference genome. For cold stress, 7905 differentially expressed genes (DEGs) were observed, 2092 for salt and 681 for iron stress; 370 of these were common to the three DEG stresses. Functional annotation by software MapMan demonstrated that cold stress usually promoted the greatest changes in the overall metabolism, and an enrichment analysis of overrepresented gene ontology (GO) terms showed that most of them are contained in plastids, ribosome, and chloroplasts. Saline stress induced a more complex interaction network of upregulated overrepresented GO terms with a relatively low number of genes compared with cold stress. Our study demonstrated a high number of differentially expressed genes under cold stress and a greater relationship between salt and iron stress levels. The physiological process most affected at the molecular level by the three stresses seems to be photosynthesis.


Subject(s)
Oryza/genetics , Plant Proteins/biosynthesis , Stress, Physiological/genetics , Transcriptome/genetics , Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Iron/toxicity , Oryza/growth & development , Plant Proteins/genetics , Sodium Chloride/toxicity , Transcriptome/drug effects
16.
Biochem Biophys Res Commun ; 471(1): 253-9, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26855133

ABSTRACT

Cold stress is a major factor affecting rice (Oryza sativa) growth and productivity, limiting its distribution worldwide. Rice production is affected primarily due to its vulnerability to cold stress at seedling stage, as well as reproductive stage leading to spikelet sterility. We report here the analysis of 21 diverse rice genotypes from the USDA mini-core collection for cold tolerance and categorized their tolerance levels on the basis of reduction in growth measured by root and shoot length. The screening identified 12 cold tolerant genotypes from which six tolerant genotypes were characterized at the vegetative stage for cold tolerance and gas-exchange parameters. Two tolerant and two sensitive genotypes were used further for gene expression analysis. Lipid Transfer Protein (LTP) genes showed a clear difference in expression between cold tolerant and sensitive genotypes suggesting that they are good candidates for engineering cold tolerance in rice. Nipponbare was identified as a cold tolerant genotype with stress tolerance mechanism potentially operating via both ABA dependent and independent pathways.


Subject(s)
Carrier Proteins/genetics , Cold-Shock Response/genetics , Gene Expression Regulation, Plant/genetics , Oryza/physiology , Photosynthesis/genetics , Plant Proteins/genetics , Genotype , Oryza/classification , Species Specificity
17.
Ciênc. rural ; 44(10): 1893-1898, 10/2014. graf
Article in English | LILACS | ID: lil-726282

ABSTRACT

This research investigates effects of salicylic acid (an abiotic elicitor) on the antioxidant activity and betacyan production from leaves of Alternanthera tenella cultured in vitro was evaluated. Plants were grown in a liquid MS medium and vermiculite substrate. After 35 days salicylic acid was added to the medium. Content of betacyanins, total phenols and flavonoids and non-enzymatic antioxidant capacity were determined in leaves of A. tenella after 0, 12, 36 and 48h of treatment. After 36h, concentration of betacyanins and total phenols increased. On the other hand, the increase of the treatment time caused a slight decrease in total flavonoids and reduced the DPPH free radical activity. As result the antioxidant activity of the leaves of A. tenella is promoted by salicylic acid and can be attributed to the increase in betacyanin content, which are compounds with recognized antioxidant action.


Este trabalho investiga o efeito do ácido salicílico (um elicitor abiótico) sobre a atividade antioxidante e produção de betacianinas em folhas de Alternanthera tenella cultivada in vitro. As plantas foram cultivadas em meio MS líquido e vermiculita como substrato. Após 35 dias, o ácido salicílico foi adicionado ao meio. Conteúdo de betacianinas, fenóis totais e flavonoides e a capacidade antioxidante não-enzimática foi determinada em folhas de A. tenella após 0, 12, 36 e 48h de tratamento. Após 36h, a concentração de betacianinas e fenóis totais aumentaram. Em contrapartida, o aumento no tempo de exposição causou uma ligeira diminuição nos teores de flavonoides totais e inibição da atividade do radical livre DPPH. Como resultado, a atividade antioxidante de folhas de A. tenella é promovida pelo ácido salicílico e pode ser atribuída ao aumento do conteúdo de betacianina, os quais são compostos com ação antioxidante reconhecida.

18.
Braz. arch. biol. technol ; 57(2): 253-260, Mar.-Apr. 2014. ilus, graf
Article in English | LILACS | ID: lil-705754

ABSTRACT

The aim of the present study was to investigate the influence of tyrosine on the in vitro growth and the production of the betacyanin pigment in Alternanthera philoxeroides and A. tenella. Nodal segments were inoculated in MS medium containing different concentrations of tyrosine (0, 25, 50 and 75 μM), and the number of sprouts and buds, height, root length, fresh matter of shoots and roots and betacyanin content were evaluated. In A. philoxeroides , the highest production of betacyanin (51.30 mg 100 g-1 FM) was in the stems with the addition of approximately 45 μM tyrosine, while the increase in the leaves was proportional to the tyrosine concentration, and the best average was obtained with a tyrosine concentration of 75 μM (15.32 mg 100 g-1 FM). Higher tyrosine concentrations were deleterious to the growth of A. tenella plants, and a concentration of 75 μM was considered toxic. However, a tyrosine concentration of 50 μM benefitted betacyanin production, which reached 36.5 mg 100 g-1 FM in the plant shoots. These results showed the positive effect of tyrosine on the production of betacyanin in both species; however, application at high concentrations hampered the growth of Alternanthera plants.

19.
Biosci. j. (Online) ; 28(5): 745-752, sept./oct 2012. ilus, tab
Article in Portuguese | LILACS | ID: biblio-914315

ABSTRACT

Este trabalho objetivou a transformação genética da cultivar de arroz BRS Taim, para obtenção de resistência ao fungo Bipolaris oryzae, agente da mancha parda. Para a transformação das plantas foi utilizada a cepa LBA 4404 de Agrobacterium tumefaciens transformada com o plasmídeo pMOG 22 que codifica o gene da quitinase do fungo entomopatogênico Metarhizium anisopliae. Mesocótilos de arroz foram imersos por 30 min. em solução bacteriana (OD600 = 0,7), contendo acetoceringona (100 Mm). Após os explantes foram co-cultivados por 72 horas em meio MS sem hormônio. Para seleção dos transformantes foi utilizado meio MS com 5 mg L-1 de BAP e 15 mg L-1 de higromicina, incubados a 25±1°C, fotoperíodo de 16 horas e densidade de fluxo de fótons de 42 µmol m-2 s-1. Foram obtidas 5 plantas transformadas, perfazendo uma média de eficiência de transformação de 1,53 %. A resistência das plantas foi observada somente por um dos isolados. Os resultados permitem concluir que as plantas de arroz transformadas com o gene da quitinase(Chit 1)podem reduzir o desenvolvimento do fungo B. oryzae, porém existe uma diferença na reação entre isolados.


This study aimed at a rice transformation for resistance to Bipolaris oryzae causal organism of Brown Spot, the cultivar BRS Taim and the line LBA 4404 of Agrobacterium tumefaciens transformed with plasmid pMOG 22 that codifies the chitinasegene Metarhizium anisopliae was used. Rice mesocotils immersed for 30 min in bacterial solution of OD600 = 0,7 with acetoceringone (100Mm), were co-cultivated for 72 hours in MS medium free of hormones and with 100Mm of acetoceringone. Mesocotils were then transferred to MS with 5mg L-1 de BAP and15 mg L-1 of higromicin for 45 days at 25°C and 16 ligth hours. The five transformed plants obtained (1,53 transformation rate) were inoculated with two B. oryzae isolates.Resistance was observed only with one of the isolates. The results indicate that rice plants transformed with chitinase gene (Chit 1)can reduce the colonization by some isolates of B. oryzae.


Subject(s)
Oryza , Transformation, Genetic , Chitinases , Fungi
20.
Ciênc. agrotec., (Impr.) ; 35(6): 1093-1100, Nov.-Dec. 2011. ilus, tab
Article in English | LILACS | ID: lil-610599

ABSTRACT

Techniques used to induce mutations, such as ionizing radiation, are an effective tool in increasing genetic variability in breeding programs of species of economic interest. This study aimed to evaluate the effect of different doses of Co60 gamma radiation on previously soaked seeds on the emergence and early growth of seedlings of two rice cultivars. To do this, seeds (25 percent moisture) of BRS Querência and BRS Fronteira were irradiated with zero (control), 50, 100, 150 and 200 Gy, and then sown in trays containing soil and kept in a greenhouse. The results showed that gamma radiation affected seedling development, where the highest dose tested (200 Gy) significantly reduced the emergence and the index of emergence speed. Growth parameters were reduced greater reduction in cv. BRS Querência. For antioxidant enzymes, superoxide dismutase expressed little variation for the periods evaluated. Already ascorbate peroxidase and catalase showed a significant increase in horsepower cv. BRS Fronteira at 14 DAS, followed by an increase in both cultivars ascorbate peroxidase activity at 28 DAS. The highest antioxidant capacity observed in cv. BRS Fronteira conferred greater tolerance to stress caused by gamma radiation.


Técnicas como radiações ionizantes, utilizadas para induzir mutações constituem ferramenta eficaz no aumento de variabilidade genética em programas de melhoramento de espécies de interesse econômico. Neste trabalho, objetivou-se verificar o efeito de diferentes doses de radiação gama Co60 em sementes previamente embebidas sobre a emergência e o crescimento inicial de plântulas de duas cultivares de arroz. Lotes de sementes com 25 por cento de umidade das cultivares BRS Querência e BRS Fronteira foram irradiados com doses de zero (controle), 50, 100, 150 e 200 Gy, sendo, em seguida, semeadas em bandejas contendo solo e mantidas em casa de vegetação. Os resultados mostraram que a radiação gama afetou o desenvolvimento das plântulas, sendo que a maior dose testada (200 Gy) reduziu, significativamente, a emergência e o índice de velocidade de emergência. Os parâmetros de crescimento apresentaram maior redução na cv. BRS Querência. Na atividade das enzimas antioxidantes, a superóxido dismutase expressou pouca variação para os períodos avaliados. Já, a ascorbato peroxidase e catalase mostraram expressivo aumento na cv. BRS Fronteira aos 14 DAS, seguidas de incremento para as duas cultivares na atividade da ascorbato peroxidase aos 28 DAS. A maior capacidade antioxidante observada na cv. BRS Fronteira conferiu uma maior tolerância ao estresse causado pela radiação gama.

SELECTION OF CITATIONS
SEARCH DETAIL
...