Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Res ; 51(7-8): 657-668, 2017.
Article in English | MEDLINE | ID: mdl-28840761

ABSTRACT

Organoselenium compounds, such as diphenyl diselenide (PhSe)2 and phenylselenium zinc chloride (PhSeZnCl), show protective activities related to their thiol peroxidase activity. However, depending on experimental conditions, organoselenium compounds can cause toxicity by oxidising thiol groups of proteins and induce the production of reactive oxygen species (ROS). Here, we analysed the toxicity of (PhSe)2 and PhSeZnCl in yeast Saccharomyces cerevisiae. Cell growth of S. cerevisiae after 1, 2, 3, 4, 6, and 16 h of treatment with 2, 4, 6, and 10 µM of (PhSe)2 was evaluated. For comparative purpose, PhSeZnCl was analysed only at 16 h of incubation at equivalent concentrations of selenium (i.e. 4, 8, 12, and 20 µM). ROS production (DCFH-DA), size, granularity, and cell membrane permeability (propidium iodide) were determined by flow cytometry. (PhSe)2 inhibited cell growth at 2 h (10 µM) of incubation, followed by increase in cell size. The increase of cell membrane permeability and granularity (10 µM) was observed after 3 h of incubation, however, ROS production occurs only at 16 h of incubation (10 µM) with (PhSe)2, indicating that ROS overproduction is a more likely consequence of (PhSe)2 toxicity and not its determinant. All tested parameters showed that only concentration of 20 µM induced toxicity in samples incubated with PhSeZnCl. In summary, the results suggest that (PhSe)2 toxicity in S. cerevisiae is time and concentration dependent, presenting more toxicity when compared with PhSeZnCl.


Subject(s)
Benzene Derivatives/pharmacology , Cell Membrane Permeability/drug effects , Organoselenium Compounds/pharmacology , Reactive Oxygen Species/metabolism , Saccharomyces cerevisiae/drug effects , Chlorides/pharmacology , Oxidation-Reduction , Selenium Compounds/pharmacology , Sulfhydryl Compounds/pharmacology , Zinc Compounds/pharmacology
2.
J Appl Toxicol ; 32(1): 20-5, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21360559

ABSTRACT

Cadmium (Cd) is a pollutant that is harmful to human and animals. The liver is a target for Cd accumulation and it can disrupt Zn homeostasis. Here we examined the interaction of Zn and Cd to determine how these two metals could affect δ-aminolevulinate-dehydratase (δ-ALA-D) and metallothionein (MT), two potential molecular endpoints for Cd hepatotoxicity. Cd exposure (0.25 and 1 mg kg1 body weight, i.p., for 10 days) caused a marked increase in hepatic Zn deposition, which was not modified by treatment with Zn (2 mg kg1 , i.p.). Cd caused a dose-dependent increase in hepatic Cd content that was not modified by Zn. Zn and/or Cd treatment increased hepatic δ-ALA-D activity, although the increase caused by Cd was less marked. Reactivation index of δ-ALA-D by DTT was decreased by Zn and Cd exposure, which indicates that Zn protects enzyme from oxidation. Hepatic MT was increased only after exposure to 1 mg kg(-1) Cd and Zn reduced the stimulation of MT synthesis. The results presented here indicate that Cd can redistribute Zn from non-hepatic tissues to liver and the increase in hepatic Zn deposition can account for the increase in hepatic δ-ALA-D activity after Cd exposure. However, Zn blocked the increase in hepatic MT levels caused by Cd. Thus, the modulation of the two molecular endpoints of Cd toxicity used here was distinct, which indicates that the mechanism(s) involved in Zn and Cd distribution, δ-ALA-D and MT regulation are not coincident.


Subject(s)
Cadmium/toxicity , Environmental Pollutants/toxicity , Liver/drug effects , Metallothionein/metabolism , Porphobilinogen Synthase/metabolism , Zinc/pharmacology , Analysis of Variance , Animals , Body Weight/drug effects , Cadmium/pharmacokinetics , Dose-Response Relationship, Drug , Environmental Pollutants/pharmacokinetics , Liver/enzymology , Liver/metabolism , Male , Rats , Rats, Wistar , Zinc/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...