Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Neural Syst ; 31(4): 2050070, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33357154

ABSTRACT

Magnesium (Mg[Formula: see text] is an essential mineral for several cellular functions. The concentration of this ion below the physiological concentration induces recurrent neuronal discharges both in slices of the hippocampus and in neuronal cultures. These epileptiform discharges are initially sensitive to the application of [Formula: see text]-methyl-D-aspartate (NMDA) receptor antagonists, but these antagonists may lose their effectiveness with prolonged exposure to low [Mg[Formula: see text]], when extracellular Ca[Formula: see text] reduction occurs, typical of ictal periods, indicating the absence of synaptic connections. The study herein presented aimed at investigating the effect of reducing the [Mg[Formula: see text]] during the induction of Nonsynaptic Epileptiform Activities (NSEA). As an experimental protocol, NSEA were induced in rat hippocampal dentate gyrus (DG), using a bath solution containing high-K[Formula: see text] and zero-added-Ca[Formula: see text]. Additionally, computer simulations were performed using a mathematical model that represents electrochemical characteristics of the tissue of the DG granular layer. The experimental results show that the reduction of [Mg[Formula: see text]] causes an increase in the duration of the ictal period and a reduction in the interictal period, intensifying epileptiform discharges. The computer simulations suggest that the reduction of the Mg[Formula: see text] level intensifies the epileptiform discharges by a joint effect of reducing the surface charge screening and reducing the activity of the Na/K pump.


Subject(s)
Epilepsy , Magnesium , Animals , Epilepsy/drug therapy , Hippocampus , In Vitro Techniques , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...