Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 7(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071195

ABSTRACT

The repurposing strategy was applied herein to evaluate the effects of lopinavir, an aspartic protease inhibitor currently used in the treatment of HIV-infected individuals, on the globally widespread opportunistic human fungal pathogen Candida albicans by using in silico, in vitro and in vivo approaches in order to decipher its targets on fungal cells and its antifungal mechanisms of action. Secreted aspartic proteases (Saps) are the obviously main target of lopinavir. To confirm this hypothesis, molecular docking assays revealed that lopinavir bound to the Sap2 catalytic site of C. albicans as well as inhibited the Sap hydrolytic activity in a typically dose-dependent manner. The inhibition of Saps culminated in the inability of C. albicans yeasts to assimilate the unique nitrogen source (albumin) available in the culture medium, culminating with fungal growth inhibition (IC50 = 39.8 µM). The antifungal action of lopinavir was corroborated by distinct microscopy analyses, which evidenced drastic and irreversible changes in the morphology that justified the fungal death. Furthermore, our results revealed that lopinavir was able to (i) arrest the yeasts-into-hyphae transformation, (ii) disturb the synthesis of neutral lipids, including ergosterol, (iii) modulate the surface-located molecules, such as Saps and mannose-, sialic acid- and N-acetylglucosamine-containing glycoconjugates, (iv) diminish the secretion of hydrolytic enzymes, such as Saps and esterase, (v) negatively influence the biofilm formation on polystyrene surface, (vi) block the in vitro adhesion to epithelial cells, (vii) contain the in vivo infection in both immunocompetent and immunosuppressed mice and (viii) reduce the Sap production by yeasts recovered from kidneys of infected animals. Conclusively, the exposed results highlight that lopinavir may be used as a promising repurposing drug against C. albicans infection as well as may be used as a lead compound for the development of novel antifungal drugs.

2.
Fungal Biol ; 124(8): 700-707, 2020 08.
Article in English | MEDLINE | ID: mdl-32690251

ABSTRACT

The opportunistic pathogens comprising the Candida haemulonii complex (C. haemulonii, C. duobushaemulonii and C. haemulonii var. vulnera) are notable for their intrinsic resistance to different antifungal classes. Little is known about the virulence attributes in this emerging fungal complex. However, it is well-recognized that enzymes play important roles in virulence/pathogenesis of candidiasis. Herein, we aimed to identify aspartyl-type peptidases in 12 clinical isolates belonging to the C. haemulonii complex. All isolates were able to grow in a chemically defined medium containing albumin as the sole nitrogen source, and a considerable consumption of this protein occurred after 72-96 h. C. haemulonii var. vulnera isolates showed the lowest albumin degradation capability and the poorest growth rate. The measurement of secreted aspartyl peptidase (Sap) activity, using the cathepsin D fluorogenic substrate, varied from 91.6 to 413.3 arbitrary units and the classic aspartyl peptidase inhibitor, pepstatin A, significantly blocked the Sap released by C. haemulonii complex. No differences were observed in the Sap activity among the three fungal species. Flow cytometry, using a polyclonal antibody against Sap1-3 of C. albicans, detected homologous proteins at the surface of C. haemulonii complex (anti-Sap1-3-labeled cells ranged from 24.6 to 79.1%). Additionally, the immunoblotting assay, conducted with the same Sap1-3 antibody, recognized a protein of ∼50 kDa in all fungal isolates. A glimpse in the genome of these fungi revealed several potential proteins containing Sap1-3-like conserved domain. Altogether, our results demonstrated the potential of C. haemulonii species complex to produce Saps, an important virulence factor of Candida spp.


Subject(s)
Antifungal Agents/pharmacology , Candida/drug effects , Candida/enzymology , Candidiasis/microbiology , Dipeptidases/metabolism , Candida/classification , Candida albicans/drug effects , Candida albicans/enzymology , Drug Resistance, Multiple , Humans , Pepstatins/pharmacology , Protease Inhibitors/pharmacology , Sequence Analysis, Protein
3.
Med Mycol ; 57(8): 1024-1037, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-30753649

ABSTRACT

Candida parapsilosis sensu stricto (C. parapsilosis) has emerged as the second/third commonest Candida species isolated from hospitals worldwide. Candida spp. possess numerous virulence attributes, including peptidases that play multiple roles in both physiological and pathological events. So, fungal peptidases are valid targets for new drugs development. With this premise in mind, we have evaluated the effect of serine peptidase inhibitors (SPIs) on both cell biology and virulence aspects of C. parapsilosis. First, five different SPIs, phenylmethylsulfonyl fluoride, benzamidine, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, N-α-tosyl-L-lysine chloromethyl ketone hydrochloride, and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) were tested, and TPCK showed the best efficacy to arrest fungal growth. Subsequently, the ability of TPCK to modulate physiopathological processes was investigated. Overall, TPCK was able to (i) inhibit the cell-associated serine peptidase activities, (ii) promote morphometric and ultrastructural alterations, (iii) induce an increase in the intracellular oxidation level, which culminates in a vigorous lipid peroxidation and accumulation of neutral lipids in cytoplasmic inclusions, (iv) modulate the expression/exposition of surface structures, such as mannose/glucose-rich glycoconjugates, N-acetylglucosamine-containing molecules, chitin, polypeptides and surface aspartic peptidases, (v) reduce the adhesion to either polystyrene or glass surfaces as well as to partially disarticulate the mature biofilm, (vi) block the fungal interaction with macrophages, and (vii) protect Galleria mellonella from fungal infection, enhancing larvae survivability. Altogether, these results demonstrated that TPCK induced several changes over fungal biology besides the interference with aspects associated to C. parapsilosis virulence and pathogenesis, which indicates that SPIs could be novel promising therapeutic agents in dealing with candidiasis.


Subject(s)
Antifungal Agents/pharmacology , Candida parapsilosis/drug effects , Candidiasis/prevention & control , Serine Proteinase Inhibitors/pharmacology , Tosylphenylalanyl Chloromethyl Ketone/pharmacology , Animals , Antifungal Agents/administration & dosage , Candida parapsilosis/cytology , Candida parapsilosis/growth & development , Cell Adhesion/drug effects , Disease Models, Animal , Larva/microbiology , Lepidoptera/microbiology , Oxidative Stress , Serine Proteinase Inhibitors/administration & dosage , Survival Analysis , Tosylphenylalanyl Chloromethyl Ketone/administration & dosage , Treatment Outcome , Virulence/drug effects
4.
Front Microbiol ; 8: 918, 2017.
Article in English | MEDLINE | ID: mdl-28579986

ABSTRACT

Fonsecaea pedrosoi is the main etiological agent of chromoblastomycosis, a recalcitrant disease that is extremely difficult to treat. Therefore, new chemotherapeutics to combat this fungal infection are urgently needed. Although aspartic peptidase inhibitors (PIs) currently used in the treatment of human immunodeficiency virus (HIV) have shown anti-F. pedrosoi activity their exact mechanisms of action have not been elucidated. In the present study, we have investigated the effects of four HIV-PIs on crucial virulence attributes expressed by F. pedrosoi conidial cells, including surface molecules and secreted enzymes, both of which are directly involved in the disease development. In all the experiments, conidia were treated with indinavir, nelfinavir, ritonavir and saquinavir (100 µM) for 24 h, and then fungal cells were used to evaluate the effects of HIV-PIs on different virulence attributes expressed by F. pedrosoi. In comparison to untreated controls, exposure of F. pedrosoi cells to HIV-PIs caused (i) reduction on the conidial granularity; (ii) irreversible surface ultrastructural alterations, such as shedding of electron dense and amorphous material from the cell wall, undulations/invaginations of the plasma membrane with and withdrawal of this membrane from the cell wall; (iii) a decrease in both mannose-rich glycoconjugates and melanin molecules and an increase in glucosylceramides on the conidial surface; (iv) inhibition of ergosterol and lanosterol production; (v) reduction in the secretion of aspartic peptidase, esterase and phospholipase; (vi) significant reduction in the viability of non-pigmented conidia compared to pigmented ones. In summary, HIV-PIs are efficient drugs with an ability to block crucial biological processes of F. pedrosoi and can be seriously considered as potential compounds for the development of new chromoblastomycosis chemotherapeutics.

5.
FEMS Yeast Res ; 13(8): 831-48, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24103069

ABSTRACT

The production of virulence attributes in three reference strains and 11 clinical isolates primarily identified as Candida parapsilosis was evaluated. Morphological and phenotypical tests were not able to discriminate among the three species of the C. parapsilosis complex; consequently, molecular methods were applied to solve this task. After employing polymerase chain reaction-based methods, nine clinical strains were identified as C. parapsilosis sensu stricto and two as C. orthopsilosis. Protease, catalase, and hemolysin were produced by all 14 strains, while 92.9% and 78.6% of strains secreted, respectively, esterase and phytase. No phospholipase producers were detected. Mannose/glucose, N-acetylglucosamine, and sialic acid residues were detected at the surface of all strains, respectively, in high, medium, and low levels. All strains presented elevated surface hydrophobicity and similar ability to form biofilm. However, the adhesion to inert substrates and mammalian cells was extremely diverse, showing typical intrastrain variations. Overall, the strains showed (1) predilection to adhere to plastic over glass and the number of pseudohyphae was more prominent than yeasts and (2) the interaction process was slightly enhanced in macrophages than fibroblasts, with the majority of fungal cells detected inside them. Positive/negative correlations were demonstrated among the production of these virulence traits in C. parapsilosis complex.


Subject(s)
Candida/classification , Phenotype , Biofilms , Candida/physiology , Candida/ultrastructure , Cell Membrane/chemistry , Cell Membrane/metabolism , Glycosylation , Humans , Hydrolysis , Hydrophobic and Hydrophilic Interactions , Molecular Typing , Phylogeny , RNA, Fungal , RNA, Ribosomal, 28S , Virulence/genetics
6.
Mini Rev Med Chem ; 13(1): 155-62, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23256485

ABSTRACT

Candida albicans can invade humans and may lead to mucosal and skin infections or to deep-seated mycoses of almost all inner organs, especially in immunocompromised patients. In this context, both the host immune status and the ability of C. albicans to modulate the expression of its virulence factors are relevant aspects that drive the candidal susceptibility or resistance; in this last case, culminating in the establishment of successful infection known as candidiasis. C. albicans possesses a potent armamentarium consisting of several virulence molecules that help the fungal cells to escape from the host immune responses. There is no doubt that the secretion of aspartic proteases, designated as Saps, is one of the major virulence attributes produced by C. albicans cells, since these hydrolytic enzymes participate in a wide range of fungal physiological processes as well as in different facets of the fungal-host interactions. For these reasons, Saps clearly hold promise as new potential drug targets. Corroborating this hypothesis, the introduction of anti-human immunodeficiency virus drugs of the aspartic protease inhibitor-type (HIV PIs) have emerged as new agents for the inhibition of Saps. The introduction of HIV PIs has revolutionized the treatment of HIV disease, reducing the opportunistic infections, especially candidiasis. The attenuation of candidal infections in HIV-infected individuals might not solely has not only resulted from improved immunological status, but also as a result of direct inhibition of C. albicans Saps as well as the blockage of several biological processes controlled by these proteolytic enzymes. The present article will discuss the updates on the functional implications of HIV PIs on the development of candidiasis.


Subject(s)
Antifungal Agents/pharmacology , Aspartic Acid Proteases/antagonists & inhibitors , Candida albicans/drug effects , Candida albicans/enzymology , Protease Inhibitors/pharmacology , Candida albicans/pathogenicity , HIV/drug effects , HIV/enzymology , Humans , Opportunistic Infections/microbiology
7.
FEMS Yeast Res ; 10(2): 221-4, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20030734

ABSTRACT

Secreted aspartyl peptidases (Saps) are virulence attributes produced by Candida albicans that participate in multiple aspects of the fungal biology and pathogenesis. In the present paper, we have shown that amprenavir, a peptidase inhibitor used in HIV chemotherapy, inhibited Sap2 and growth of C. albicans and also promoted ultrastructural alterations. Esterase activity, sterol content, biofilm formation and the expression of surface mannose- and sialic acid-rich glycoconjugates were also reduced by amprenavir.


Subject(s)
Aspartic Acid Endopeptidases/antagonists & inhibitors , Candida albicans/drug effects , Carbamates/pharmacology , Fungal Proteins/antagonists & inhibitors , HIV Protease Inhibitors/pharmacology , Sulfonamides/pharmacology , Biofilms/drug effects , Blood/microbiology , Candida albicans/growth & development , Candida albicans/metabolism , Candida albicans/ultrastructure , Candidiasis/microbiology , Culture Media , Fungemia/microbiology , Furans , Humans , Male , Microbial Sensitivity Tests , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...