Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
2.
J Appl Microbiol ; 122(2): 402-415, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27859958

ABSTRACT

AIMS: Fungal diseases are among the main factors limiting high yields of soybean crop. Colletotrichum isolates from soybean plants with anthracnose symptoms were studied from different regions and time periods in Brazil using molecular, morphological and pathogenic analyses. METHODS AND RESULTS: Bayesian phylogenetic inference of GAPDH, HIS3 and ITS-5.8S rDNA sequences, the morphologies of colony and conidia, and inoculation tests on seeds and seedlings were performed. All isolates clustered only with Colletotrichum truncatum species in three well-separated clusters. Intraspecific genetic diversity revealed 27 distinct haplotypes in 51 fungal isolates; some of which were identical to C. truncatum sequences from other regions around the world, while others were related to alternative hosts. Conidia were falcate, hyaline, unicellular and aseptate, formed in acervuli, with variable dimensions. Despite being pathogenic to seedlings by both inoculation methods, variation was observed in the aggressiveness of the tested isolates, which was not correlated with genetic variation. CONCLUSION: The identification of C. truncatum in the sampled isolates was evidenced as being the only causal agent of soybean anthracnose in Brazil until 2007, with relevant genetic, morphological and pathogenic variability as well as a broad geographical origin. The wide distribution of the predominant C. truncatum haplotype indicated the existence of a highly efficient mechanism of pathogen dispersal over long distances, reinforcing the role of seeds as the primary source of disease inoculum. SIGNIFICANCE AND IMPACT OF THE STUDY: The characterization and distribution of Colletotrichum species in soybean-producing regions in Brazil is fundamental for understanding the disease epidemiology and for ensuring effective control strategies against anthracnose.


Subject(s)
Colletotrichum/isolation & purification , Glycine max/microbiology , Plant Diseases/microbiology , Bayes Theorem , Brazil , Colletotrichum/classification , Colletotrichum/cytology , Colletotrichum/genetics , DNA, Fungal/genetics , DNA, Ribosomal , Genetic Variation , Geography , Phylogeny , Glycine max/genetics , Spores, Fungal/classification , Spores, Fungal/cytology , Spores, Fungal/isolation & purification
3.
Genet Mol Res ; 15(1): 15017765, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26985964

ABSTRACT

Bananas are one of the most consumed fruits worldwide, but are affected by many pests and diseases. One of the most devastating diseases is Fusarium wilt, caused by Fusarium oxysporum f. sp cubense (Foc). Recently, Fusarium tropical race 4 (Foc TR4) has been causing irreparable damage, especially in Asia and Africa where it has devastated entire plantations, including areas with Cavendish, which is known to be resistant to Foc race 1. Although this race is not yet present in Brazil, results obtained by Embrapa in partnership with the University of Wageningen, The Netherlands, indicate that 100% of the cultivars used by Brazilian growers are susceptible to Foc TR 4. In our study, 276 banana accessions were screened with sequence characterized amplified region (SCAR) markers that have been linked to the resistance of Foc TR 4. Two SCAR primers were tested and the results revealed that SCAR ScaU1001 was efficient at discriminating accessions with possible resistance in 36.6% of the evaluated accessions. This is the first attempt to develop a thematic collection of possible Foc TR 4 resistant banana accessions in Brazil, which could be tested in Asian or African countries to validate marker-assisted selection (MAS), and for use in the preventive breeding of the crop to safeguard our banana plantations against Foc TR 4. We believe that this is an important step towards the prevention of this devastating disease, especially considering that our banana plantations are at risk.


Subject(s)
Breeding , Disease Resistance/genetics , Fusarium , Musa/genetics , Mycoses/genetics , Polymorphism, Genetic , Brazil , Musa/microbiology , Plant Diseases/genetics
4.
Genet Mol Res ; 14(3): 8046-57, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26214487

ABSTRACT

Among the diseases affecting banana (Musa sp), yellow Sigatoka, caused by the fungal pathogen Mycosphaerella musicola Leach, is considered one of the most important in Brazil, causing losses throughout the year. Understanding the genetic structure of pathogen populations will provide insight into the life history of pathogens, including the evolutionary processes occurring in agrosystems. Tools for estimating the possible emergence of pathogen variants with altered pathogenicity, virulence, or aggressiveness, as well as resistance to systemic fungicides, can also be developed from such data. The objective of this study was to analyze the genetic diversity and population genetics of M. musicola in the main banana-producing regions in Brazil. A total of 83 isolates collected from different banana cultivars in the Brazilian states of Bahia, Rio Grande do Norte, and Minas Gerais were evaluated using inter-simple sequence repeat markers. High variability was detected between the isolates, and 85.5% of the haplotypes were singletons in the populations. The highest source of genetic diversity (97.22%) was attributed to variations within populations. Bayesian cluster analysis revealed the presence of 2 probable ancestral groups, however, showed no relationship to population structure in terms of collection site, state of origin, or cultivar. Similarly, we detected noevidence of genetic recombination between individuals within different states, indicating that asexual cycles play a major role in M. musicola reproduction and that long-distance dispersal of the pathogen is the main factor contributing to the lack of population structure in the fungus.


Subject(s)
Ascomycota/genetics , Genetic Variation , Microsatellite Repeats/genetics , Ascomycota/isolation & purification , Brazil , Cluster Analysis , Gene Flow , Genetic Markers , Genotype , Geography
5.
Plant Dis ; 98(9): 1272, 2014 Sep.
Article in English | MEDLINE | ID: mdl-30699624

ABSTRACT

Barbados cherry, also called acerola, is a fruit originated from tropical America that is well-known for its high content of vitamin C and nutritional value. Anthracnose is one of the most common diseases on Barbados cherry. In Brazil, this disease is associated with Colletotrichum gloeosporioides sensu lato (2). In 2012, necrotic and sunken spots were observed on Barbados cherry fruit (cv. Rubra) in Sao Paulo State, Brazil, from which a Colletotrichum species was isolated on potato dextrose agar (PDA). The isolate was grown on PDA at 25°C and 12-h photoperiod under fluorescent light. The colony was gray on the upper surface and the reverse part was dark gray. Conidia (n = 50) were cylindrical to subcylindrical, hyaline, and 12 to 15 (avg. 12.7) × 3.8 to 5.9 (avg. 4.3) µm. Conidia length/width ratio was 2 to 3.6. Pathogenicity was confirmed on Barbados cherry fruit. Inoculation was carried out by depositing 40-µl droplets of a conidial suspension (1 × 105 conidia ml-1) on fruit wounded with a sterilized needle and on non-wounded fruit. Fruit were incubated in a moist chamber at 25°C. First symptoms appeared 3 and 5 days after inoculation on wounded and non-wounded fruit, respectively. No symptoms were observed on control fruit inoculated with water. Six isolates recovered from inoculated fruit showed the same morphological characteristics of the previous isolate. The DNA of the fungus was extracted by a CTAB protocol (1) and the sequences of ITS, GAPDH, ACT, CHS-1, TUB, and CAL genes (4) were generated. Sequences were used in BLAST searches in GenBank and were 100% similar to C. theobromicola, except for GAPDH. The ITS (KC566724) and CAL (KC566437) sequences matched strain ICMP 17099 (JX010285 and JX009588, respectively) with 100% identity. The BTUB (KC566148), GAPDH (KC566578), ACT (KC566870), and CHS-1(KC566292) sequences matched with the strains ICMP 18649 (JX010447, 100% identity), ICMP 17099 (JX009957, 99% identity, 1 pb), ICMP 18567 (JX009457, 100% identity), and ICMP 18613 (JX009771, 100% identity), respectively. The sequences were also compared with authentic culture of C. gloeosporioides (IMI 356878) and the identities were: ITS 99% (JX010148), CAL 91% (JX009729), BTUB 90% (JX010445), GAPDH 83% (GU174561), ACT 93% (JX009494), and CHS-1 98% (JX009747). Based on the multi-gene sequencing, the isolate was identified as C. theobromicola. C. theobromicola was described in 2010 (3) and it is considered as a widely distributed species occurring on different hosts in tropical and subtropical regions (4). This report shows the necessity of the identification of Colletotrichum species from tropical fruits to elucidate the etiology of anthracnose diseases of which C. gloeosporioides sensu lato is considered to be the causal agent. To our knowledge, this is the first report of C. theobromicola on Barbados cherry. References: (1) M. G. Murray and W. F. Thompson. Nucleic Acids Res. 8:4321, 1980. (2) R. Ritzinger et al. Acerola em Foco 13:1, 2007. (3) E. I. Rojas et al. Mycologia 102:1318, 2010. (4) B. S. Weir et al. Stud. Mycol. 73:115, 2012.

SELECTION OF CITATIONS
SEARCH DETAIL
...