Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Ecol ; 91(3): 551-565, 2022 03.
Article in English | MEDLINE | ID: mdl-34954827

ABSTRACT

Under increasing nutrient loading, shallow lakes may shift from a state of clear water dominated by submerged macrophytes to a turbid state dominated by phytoplankton or a shaded state dominated by floating macrophytes. How such regime shifts mediate the relationship between taxonomic and functional diversities (FD) and lake multifunctionality is poorly understood. We employed a detailed database describing a shallow lake over a 12-year period during which the lake has displayed all the three states (clear, turbid and shaded) to investigate how species richness, FD of fish and zooplankton, ecosystem multifunctionality and five individual ecosystem functions (nitrogen and phosphorus concentrations, standing fish biomass, algae production and light availability) differ among states. We also evaluated how the relationship between biodiversity (species richness and FD) and multifunctionality is affected by regime shifts. We showed that species richness and the FD of fish and zooplankton were highest during the clear state. The clear state also maintained the highest values of multifunctionality as well as standing fish biomass production, algae biomass and light availability, whereas the turbid and shaded states had higher nutrient concentrations. Functional diversity was the best predictor of multifunctionality. The relationship between FD and multifunctionality was strongly positive during the clear state, but such relationship became flatter after the shift to the turbid or shaded state. Our findings illustrate that focusing on functional traits may provide a more mechanistic understanding of how regime shifts affect biodiversity and the consequences for ecosystem functioning. Regime shifts towards a turbid or shaded state negatively affect the taxonomic diversity and FD of fish and zooplankton, which in turn impairs the multifunctionality of shallow lakes.


Subject(s)
Ecosystem , Lakes , Animals , Biomass , Fishes , Phytoplankton
2.
An Acad Bras Cienc ; 93(suppl 3): e20200778, 2021.
Article in English | MEDLINE | ID: mdl-34431864

ABSTRACT

Studies considering the functional traits of organisms, populations, and communities functional indices increase the understanding of many factors on ecosystem functioning. Here, we analyze the predation effect (by fish) on zooplankton functional diversity and the effects of biomass and density of periphytic algae on zooplankton feeding type trait and body size. We expect that intense predation by fish on zooplankton leads to higher values of zooplankton functional diversity and that food resource will be positively related to the abundance of zooplankton trait and body size. For that, microcosms were established (T1- fish-absence, and T2- fish-presence, both with periphytic algae as food). We observed that fish presence decreased zooplankton functional diversity through modifications in the availability of nutrients and algae, through the middle-out effect. We also observed that body size had a negative relationship with the food resource, reaffirming that high food availability in subtropical lakes is linked to small-bodied zooplankton. The raptorial copepods covariate positively with the periphytic algae, which was an alternative food resource and, in this case, the main form of carbon input into the system. In this study, omnivorous fish reduced zooplankton functional traits, which can alter the energy stock and energy flow in aquatic ecosystems.


Subject(s)
Predatory Behavior , Zooplankton , Animals , Ecosystem , Food Chain , Phytoplankton
SELECTION OF CITATIONS
SEARCH DETAIL
...