Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Brain Spine ; 4: 102727, 2024.
Article in English | MEDLINE | ID: mdl-38178989

ABSTRACT

Introduction: Patients who suffer severe traumatic brain injury (sTBI) and cerebral vasospasm (CVS) frequently have posttraumatic cerebral ischemia (PCI). The research question: was to study changes in cerebral microcirculatory bed parameters in sTBI patients with CVS and with or without PCI. Material and methods: A total of 136 severe TBI patients were recruited in the study. All patients underwent perfusion computed tomography, intracranial pressure monitoring, and transcranial Doppler. The levels of cerebrovascular resistance (CVR), cerebral arterial compliance (CAC), cerebrovascular time constant (CTC), and critical closing pressure (CCP) were measured using the neuromonitoring complex. Statistical analysis was performed using parametric and nonparametric methods and factor analysis. The patients were dichotomized into PCI-positive (n = 114) and PCI-negative (n = 22) groups. Data are presented as mean values (standard deviations). Results: CVR was significantly increased, whereas CAC, CTC, and CCP were significantly decreased in sTBI patients with CVS and PCI development (p < 0.05). Factor analyses revealed that all studied microcirculatory bed parameters were significantly associated with the development of PCI (p < 0.05). Discussion and conclusion: The changes in all studied microcirculatory bed parameters in TBI patients with CVS were significantly associated with PCI development, which enables us to regard them as the biomarkers of CVS and PCI development. The causes of the described microcirculatory bed parameters changes might include complex (cytotoxic and vasogenic) brain edema development, regional microvascular spasm, and dysfunction of pericytes. A further prospective study is warranted.

2.
Brain Spine ; 3: 102675, 2023.
Article in English | MEDLINE | ID: mdl-38020994

ABSTRACT

Introduction: The relationship between arterial and venous blood flow in moderate-to-severe traumatic brain injury (TBI) is poorly understood. The research question: was to compare differences in perfusion computed tomography (PCT)-derived arterial and venous cerebral blood flow (CBF) in moderate-to-severe TBI as an indication of changes in cerebral venous outflow patterns referenced to arterial inflow. Material and methods: Moderate-to-severe TBI patients (women 53; men 74) underwent PCT and were stratified into 3 groups: I (moderate TBI), II (diffuse severe TBI without surgery), and III (severe TBI after the surgery). Arterial and venous CBF were measured by PCT in both the internal carotid arteries (CBFica) and the confluence of upper sagittal, transverse, and straight sinuses (CBFcs). Results: In group I, CBFica on the left and right sides were significantly correlated with each other (p < 0.0001) and with CBFcs (p = 0.048). In group II, CBFica on the left and right sides were also correlated (P < 0.0000001) but not with CBFcs. Intracranial pressure reactivity (PRx) and CBFcs were correlated (p = 0.00014). In group III, CBFica on the side of the removed hematoma was not significantly different from the opposite CBFica (P = 0.680) and was not correlated with CBFcs. Discussion and conclusion: The increasing severity of TBI is accompanied by a rising uncoupling between the arterial and venous CBF in the supratentorial vessels suggesting a shifting of cerebral venous outflow.

3.
Adv Exp Med Biol ; 1438: 9-13, 2023.
Article in English | MEDLINE | ID: mdl-37845432

ABSTRACT

Transcranial alternating current stimulation (tACS) is a novel non-invasive electrical stimulation technique where a sinusoidal oscillating low-voltage electric current is applied to the brain. TACS is being actively investigated in practice for cognition and behavior modulation and for treating brain disorders. However, the physiological mechanisms of tACS are underinvestigated and poorly understood. Previously, we have shown that transcranial direct current stimulation (tDCS) facilitates cerebral microcirculation and oxygen supply in a mouse brain through nitric oxide-dependent vasodilatation of arterioles. Considering that the effects of tACS and tDCS might be both similar and dissimilar, we tested the effects of tACS on regional cerebral blood flow and oxygen saturation in anesthetized and awake mice using laser speckle contrast imaging and multispectral intrinsic optical signal imaging. The anesthetized mice were imaged under isoflurane anesthesia ∼1.0% in 30% O2 and 70% N2O. The awake mice were pre-trained on the rotating ball for awake imaging. Baseline imaging with further tACS was followed by post-stimulation imaging for ~3 h. Differences between groups were determined using a two-way ANOVA analysis for multiple comparisons and post hoc testing using the Mann-Whitney U test. TACS increased cerebral blood flow and oxygen saturation. In awake mice, rCBF and oxygen saturation responses were more robust and prolonged as opposed to anesthetized, where the response was weaker and shorter with overshoot. The significant difference between anesthetized and awake mice emphasizes the importance of the experiments on the latter as anesthesia is not typical for human stimulation and significantly alters the results.


Subject(s)
Transcranial Direct Current Stimulation , Humans , Mice , Animals , Transcranial Direct Current Stimulation/methods , Wakefulness , Microcirculation , Brain/physiology , Cerebrovascular Circulation
4.
Adv Exp Med Biol ; 1438: 51-58, 2023.
Article in English | MEDLINE | ID: mdl-37845439

ABSTRACT

We compared differences in perfusion computed tomography (PCT)-derived arterial and venous cerebral blood flow (CBF) in moderate-to-severe traumatic brain injury (TBI) as an indication of changes in cerebral venous outflow patterns referenced to arterial inflow. Moderate-to-severe TBI patients (women 53; men 74) underwent PCT and were stratified into 3 groups: I (moderate TBI), II (diffuse severe TBI without surgery), and III (diffuse severe TBI after the surgery). Arterial and venous CBF was measured by PCT in both the middle cerebral arteries (CBFmca) and the upper sagittal sinus (CBFuss). In group I, CBFmca on the left and right sides were significantly correlated with each other (p < 0.0001) and with CBFuss (p = 0.048). In group II, CBFmca on the left and right sides were also correlated (p < 0.0000001) but not with CBFuss. Intracranial pressure reactivity (PRx) and CBFuss were correlated (p = 0.00014). In group III, CBFmca on the side of the removed hematoma was not significantly different from the opposite CBFmca (p = 0.680) and was not correlated with CBFuss. Conclusions: The increasing severity of TBI is accompanied by an impairment of the correlation between the arterial and venous CBF in the supratentorial vessels suggesting shifting in arterial and venous CBF in severe TBI associated with increased ICP reflected by PRx.


Subject(s)
Brain Injuries, Traumatic , Male , Humans , Female , Brain Injuries, Traumatic/diagnostic imaging , Tomography, X-Ray Computed , Cerebrovascular Circulation/physiology , Middle Cerebral Artery/diagnostic imaging , Perfusion , Intracranial Pressure/physiology
5.
Adv Exp Med Biol ; 1438: 59-64, 2023.
Article in English | MEDLINE | ID: mdl-37845440

ABSTRACT

We assessed net water uptake changes (NWU) in regions of posttraumatic ischemia in relation to cerebral microcirculation mean transit time (MTT) at moderate-to-severe traumatic brain injury (TBI). MATERIALS AND METHODS: 128 moderate-to-severe traumatic brain injury patients (44 women, 84 men, age: 37 ± 12 years) were stratified into 3 groups: Marshall 2-3: 48 patients, Marshall 4: 44 patients, Marshall 5: 36 patients. The groups were matched by sex and age. Patients received multiphase perfusion computed tomography (PCT) 1-5 days after admission. Net water uptake was calculated from non-contrast computed tomography. Data are shown as a median [interquartile range]. P < 0.05 was considered statistically significant. RESULTS: Cerebral blood flow in posttraumatic ischemia foci in Marshall 4 group was significantly higher than that in the Marshall 5 group (p = 0.027). Net water uptake in posttraumatic ischemia zones was significantly higher than in zones without posttraumatic ischemia (8.1% versus 4.2%, p < 0.001). Mean transit time in posttraumatic ischemia zones was inversely and significantly correlated with higher net water uptake (R2 = 0,089, p < 0.01). CONCLUSIONS: Delay of blood flow through the cerebral microvascular bed was significantly correlated with the increased net water uptake in posttraumatic ischemia foci. Marshall's classification did not predict the progression of posttraumatic ischemia.


Subject(s)
Brain Injuries, Traumatic , Brain Ischemia , Male , Humans , Female , Adult , Middle Aged , Brain Ischemia/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Tomography, X-Ray Computed , Hemodynamics , Cerebrovascular Circulation/physiology , Ischemia
6.
Adv Exp Med Biol ; 1438: 77-81, 2023.
Article in English | MEDLINE | ID: mdl-37845443

ABSTRACT

Traumatic brain injury (TBI) ultimately leads to a reduction in the cerebral metabolic rate for oxygen due to ischemia. Previously, we showed that 2 ppm i.v. of drag-reducing polymers (DRP) improve hemodynamic and oxygen delivery to tissue in a rat model of mild-to-moderate TBI. Here we evaluated sex-specific and dose-dependent effects of DRP on microvascular CBF (mvCBF) and tissue oxygenation in rats after moderate TBI. In vivo two-photon laser scanning microscopy over the rat parietal cortex was used to monitor the effects of DRP on microvascular perfusion, tissue oxygenation, and blood-brain barrier (BBB) permeability. Lateral fluid-percussion TBI (1.5 ATA, 100 ms) was induced after baseline imaging and followed by 4 h of monitoring. DRP was injected at 1, 2, or 4 ppm within 30 min after TBI. Differences between groups were determined using a two-way ANOVA analysis for multiple comparisons and post hoc testing using the Mann-Whitney U test. Moderate TBI progressively decreased mvCBF, leading to tissue hypoxia and BBB degradation in the pericontusion zone (p < 0.05). The i.v. injection of DRP increased near-wall flow velocity and flow rate in arterioles, leading to an increase in the number of erythrocytes entering capillaries, enhancing capillary perfusion and tissue oxygenation while protecting BBB in a dose-dependent manner without significant difference between males and females (p < 0.01). TBI resulted in an increase in intracranial pressure (20.1 ± 3.2 mmHg, p < 0.05), microcirculatory redistribution to non-nutritive microvascular shunt flow, and stagnation of capillary flow, all of which were dose-dependently mitigated by DRP. DRP at 4 ppm was most effective, with a non-significant trend to better outcomes in female rats.


Subject(s)
Brain Injuries, Traumatic , Polymers , Female , Male , Rats , Animals , Polymers/metabolism , Microcirculation , Brain Injuries, Traumatic/drug therapy , Blood-Brain Barrier/metabolism , Oxygen/metabolism , Cerebrovascular Circulation
7.
J Neurotrauma ; 40(13-14): 1481-1494, 2023 07.
Article in English | MEDLINE | ID: mdl-36869619

ABSTRACT

Abstract Traumatic brain injury (TBI) continues to be a major cause of death and disability worldwide. This study assessed the effectiveness of non-invasive vagus nerve stimulation (nVNS) in reducing brain lesion volume and improving neurobehavioral performance in a rat model of TBI. Animals were randomized into three experimental groups: (1) TBI with sham stimulation treatment (Control), (2) TBI treated with five lower doses (2-min) nVNS, and (3) TBI treated with five higher doses (2 × 2-min) nVNS. We used the gammaCore nVNS device to deliver stimulations. Magnetic resonance imaging studies were performed 1 and 7 days post-injury to confirm lesion volume. We observed smaller brain lesion volume in the lower dose nVNS group compared with the control group on days 1 and 7. The lesion volume for the higher dose nVNS group was significantly smaller than either the lower dose nVNS or the control groups on days 1 and 7 post-injury. The apparent diffusion coefficient differences between the ipsilateral and contralateral hemispheres on day 1 were significantly smaller for the higher dose (2 × 2 min) nVNS group than for the control group. Voxel-based morphometry analysis revealed an increase in the ipsilateral cortical volume in the control group caused by tissue deformation and swelling. On day 1, these abnormal volume changes were 13% and 55% smaller in the lower dose and higher dose nVNS groups, respectively, compared with the control group. By day 7, nVNS dampened cortical volume loss by 35% and 89% in the lower dose and higher dose nVNS groups, respectively, compared with the control group. Rotarod, beam walking, and anxiety performances were significantly improved in the higher-dose nVNS group on day 1 compared with the control group. The anxiety indices were also improved on day 7 post-injury compared with the control and the lower-dose nVNS groups. In conclusion, the higher dose nVNS (five 2 × 2-min stimulations) reduced brain lesion volume to a level that further refined the role of nVNS therapy for the acute treatment of TBI. Should nVNS prove effective in additional pre-clinical TBI models and later in clinical settings, it would have an enormous impact on the clinical practice of TBI in both civilian and military settings, as it can easily be adopted into routine clinical practice.


Subject(s)
Brain Injuries, Traumatic , Vagus Nerve Stimulation , Rats , Animals , Vagus Nerve Stimulation/methods , Double-Blind Method , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/therapy , Brain/diagnostic imaging
8.
Adv Exp Med Biol ; 1395: 3-7, 2022.
Article in English | MEDLINE | ID: mdl-36527605

ABSTRACT

Traumatic brain injury (TBI) leads to cerebral microvascular dysfunction and cerebral ischemia. Endothelial nitric oxide synthase (eNOS) is a key regulator of vascular homeostasis. We aimed to assess the role of eNOS in cerebral blood flow (CBF) changes after TBI. Moderate TBI was induced in eNOS knockout (KO) and wild-type (WT) mice (8 per group). Cerebral microvascular tone, microvascular CBF (mCBF) and tissue oxygenation (NADH) were measured by two-photon laser scanning microscopy (2PLSM) before and 1 h, 1 day and 3 days after TBI. Cerebrovascular reactivity (CVR) was evaluated by the hypercapnia test. Laser Doppler cortical flux (cLDF) was simultaneously measured in the perilesional area. One hr after TBI, cLDF was 59.4 ± 8.2% and 60.3 ± 9.1% from the baseline (p < 0.05) in WT and eNOS KO, respectively. 2PLSM showed decreased arteriolar diameter, the number of functioning capillaries, mCBF and tissue oxygenation (p < 0.05). At 1 day, cLDF increased to 65.2 ± 6.4% in the WT group, while it decreased to 56.1 ± 7.2% in the eNOS KO mice. 2PLSM revealed a further decrease in the number of functioning capillaries, mCBF, and oxygen supply which was slightly milder in WT mice (p < 0.05 from the baseline). On the third day after TBI, cLDF increased to 72 ± 5.2% in the WT, while it stayed the same in the eNOS KO group (55.9 ± 6.4%, p < 0.05 from the WT). 2PLSM showed reduction in arterioles with vasospasm, increase in the number of functioning capillaries, and improvement in mCBF and tissue oxygen supply in WT, while no significant changes were observed in eNOS KO (p < 0.05). CVR was impaired in both groups 1 h after TBI, and improved by the third day in the WT, while staying impaired in eNOS KO. In the subacute TBI period, the significance of eNOS in maintaining cerebral microcirculation and oxygen supply increases with time after the injury.


Subject(s)
Brain Injuries, Traumatic , Nitric Oxide Synthase Type III , Animals , Mice , Microcirculation , Nitric Oxide Synthase Type III/genetics , Cerebrovascular Circulation/physiology , Mice, Knockout , Oxygen , Nitric Oxide
9.
Adv Exp Med Biol ; 1269: 283-288, 2021.
Article in English | MEDLINE | ID: mdl-33966231

ABSTRACT

Hemorrhagic shock (HS) is a severe complication of traumatic brain injury (TBI) that doubles mortality due to severely compromised microvascular cerebral blood flow (mvCBF) and oxygen delivery reduction, as a result of hypotension. Volume expansion with resuscitation fluids (RF) for HS does not improve microvascular CBF (mvCBF); moreover, it aggravates brain edema. We showed that the addition of drag-reducing polymers (DRP) to crystalloid RF (lactated Ringer's) significantly improves mvCBF, oxygen supply, and neuronal survival in rats suffering TBI+HS. Here, we compared the effects of colloid RF (Hetastarch) with DRP (HES-DRP) and without (HES). Fluid percussion TBI (1.5 ATA, 50 ms) was induced in rats and followed by controlled HS to a mean arterial pressure (MAP) of 40 mmHg. HES or HES-DRP was infused to restore MAP to 60 mmHg for 1 h (prehospital period), followed by blood reinfusion to a MAP of 70 mmHg (hospital period). In vivo two-photon microscopy was used to monitor cerebral microvascular blood flow, tissue hypoxia (NADH), and neuronal necrosis (i.v. propidium iodide) for 5 h after TBI+HS, followed by postmortem DiI vascular painting. Temperature, MAP, blood gases, and electrolytes were monitored. Statistical analyses were done using GraphPad Prism by Student's t-test or Kolmogorov-Smirnov test, where appropriate. TBI+HS compromised mvCBF and tissue oxygen supply due to capillary microthrombosis. HES-DRP improved mvCBF and tissue oxygenation (p < 0.05) better than HES. The number of dead neurons in the HES-DRP was significantly less than in the HES group: 76.1 ± 8.9 vs. 178.5 ± 10.3 per 0.075 mm3 (P < 0.05). Postmortem visualization of painted vessels revealed vast microthrombosis in both hemispheres that were 33 ± 2% less in HES-DRP vs. HES (p < 0.05). Thus, resuscitation after TBI+HS using HES-DRP effectively restores mvCBF and reduces hypoxia, microthrombosis, and neuronal necrosis compared to HES. HES-DRP is more neuroprotective than lactated Ringer's with DRP and requires an infusion of a smaller volume, which reduces the development of hypervolemia-induced brain edema.


Subject(s)
Brain Injuries, Traumatic , Shock, Hemorrhagic , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/therapy , Colloids , Microcirculation , Polymers , Rats , Rats, Sprague-Dawley , Resuscitation , Shock, Hemorrhagic/therapy
10.
Acta Neurochir Suppl ; 131: 289-293, 2021.
Article in English | MEDLINE | ID: mdl-33839860

ABSTRACT

Hemorrhagic shock (HS) after traumatic brain injury (TBI) reduces cerebral perfusion pressure (CPP) and cerebral blood flow (CBF), increasing hypoxia and doubling mortality. Volume expansion with resuscitation fluids (RFs) for HS does not improve CBF and tissue oxygen, while hypervolemia exacerbates brain edema and elevates intracranial pressure (ICP). We tested whether drag-reducing polymers (DRPs), added to isotonic Hetastarch (HES), would improve CBF but prevent ICP increase. TBI was induced in rats by fluid percussion, followed by controlled hemorrhage to mean arterial pressure (MAP) = 40 mmHg. HES-DRP or HES was infused to MAP = 60 mmHg for 1 h, followed by blood reinfusion to MAP = 70 mmHg. Temperature, MAP, ICP, cortical Doppler flux, blood gases, and electrolytes were monitored. Microvascular CBF, tissue hypoxia, and neuronal necrosis were monitored by two-photon laser scanning microscopy 5 h after TBI/HS. TBI/HS reduced CPP and CBF, causing tissue hypoxia. HES-DRP (1.9 ± 0.8 mL) more than HES (4.5 ± 1.8 mL) improved CBF and tissue oxygenation (p < 0.05). In the HES group, ICP increased to 23 ± 4 mmHg (p < 0.05) but in HES-DRP to 12 ± 2 mmHg. The number of dead neurons, microthrombosis, and the contusion volume in HES-DRP were significantly less than in the HES group (p < 0.05). HES-DRP required a smaller volume, which reduced ICP and brain edema.


Subject(s)
Brain Injuries, Traumatic , Shock, Hemorrhagic , Animals , Blood Pressure , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/therapy , Cerebrovascular Circulation , Intracranial Pressure , Microcirculation , Perfusion , Polymers , Rats , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/therapy
11.
Adv Exp Med Biol ; 1232: 39-45, 2020.
Article in English | MEDLINE | ID: mdl-31893392

ABSTRACT

Outcome after traumatic brain injury (TBI) is worsened by hemorrhagic shock (HS); however, the existing volume expansion approach with resuscitation fluids (RF) is controversial as it does not adequately alleviate impaired microvascular cerebral blood flow (mCBF). We previously reported that resuscitation fluid with drag reducing polymers (DRP-RF) improves CBF by rheological modulation of hemodynamics. Here, we evaluate the efficacy of DRP-RF, compared to lactated Ringers resuscitation fluid (LR-RF), in reducing cerebral microthrombosis and reperfusion mitochondrial oxidative stress after TBI complicated by HS. Fluid percussion TBI (1.5 ATA, 50 ms) was induced in rats and followed by controlled HS to a mean arterial pressure (MAP) of 40 mmHg. DRP-RF or LR-RF was infused to restore MAP to 60 mmHg for 1 h (pre-hospital period), followed by blood re-infusion to a MAP = 70 mmHg (hospital period). In vivo 2-photon laser scanning microscopy over the parietal cortex was used to monitor microvascular blood flow, nicotinamide adenine dinucleotide (NADH) for tissue oxygen supply and mitochondrial oxidative stress (superoxide by i.v. hydroethidine [HEt], 1 mg/kg) for 4 h after TBI/HS, followed by Dil vascular painting during perfusion-fixation. TBI/HS decreased mCBF resulting in capillary microthrombosis and tissue hypoxia. Microvascular CBF and tissue oxygenation were significantly improved in the DRP-RF compared to the LR-RF treated group (p < 0.05). Reperfusion-induced oxidative stress, reflected by HEt fluorescence, was 32 ± 6% higher in LR-RF vs. DRP-RF (p < 0.05). Post-mortem whole-brain visualization of DiI painted vessels revealed multiple microthromboses in both hemispheres that were 29 ± 3% less in DRP-RF vs. LR-RF group (p < 0.05). Resuscitation after TBI/HS using DRP-RF effectively restores mCBF, reduces hypoxia, microthrombosis formation, and mitochondrial oxidative stress compared to conventional volume expansion with LR-RF.


Subject(s)
Brain Injuries, Traumatic , Oxidative Stress , Polymers , Resuscitation , Shock, Hemorrhagic , Thrombosis , Animals , Brain Injuries, Traumatic/drug therapy , Polymers/therapeutic use , Rats , Resuscitation/methods , Thrombosis/prevention & control
12.
Adv Exp Med Biol ; 1232: 47-53, 2020.
Article in English | MEDLINE | ID: mdl-31893393

ABSTRACT

Cerebrovascular reactivity (CVR) is a compensatory mechanism where blood vessels dilate in response to a vasodilatory stimulus, and is a biomarker of vascular reserve and microvascular health. Impaired CVR indicates microvascular hemodynamic dysfunction, which is implicated in traumatic brain injury (TBI) and associated with long-term neurological deficiency. Recently we have shown that anodal transcranial direct current stimulation (tDCS) caused prolonged dilatation of cerebral arterioles that increased brain microvascular flow and tissue oxygenation in traumatized mouse brain and was associated with neurologic improvement. Here we evaluate the effects of tDCS on impaired CVR and microvascular cerebral blood flow (mCBF) regulation after TBI. TBI was induced in mice by controlled cortical impact (CCI). Cortical microvascular tone, mCBF, and tissue oxygen supply (by nicotinamide adenine dinucleotide, NADH) were measured by two-photon laser scanning microscopy before and after anodal tDCS (0.1 mA/15 min). CVR and mCBF regulation were evaluated by measuring changes in arteriolar diameters and NADH during hypercapnia test before and after tDCS. Transient hypercapnia was induced by 60-s increase of CO2 concentration in the inhalation mixture to 10%. As previously, anodal tDCS dilated arterioles which increased arteriolar blood flow volume that led to an increase in capillary flow velocity and the number of functioning capillaries, thereby improving tissue oxygenation in both traumatized and sham animals. In sham mice, transient hypercapnia caused transient dilatation of cerebral arterioles with constant NADH, reflecting intact CVR and mCBF regulation. In TBI animals, arteriolar dilatation response to hypercapnia was diminished while the NADH level increased (tissue oxygen supply decreased), reflecting impaired CVR and mCBF regulation. Anodal tDCS enhanced reactivity in parenchymal arterioles in both groups (especially in TBI mice) and restored CVR thereby prevented the reduction in tissue oxygen supply during hypercapnia. CVR has been shown to be related to nitric oxide elevation due to nitric oxide synthases activation, which can be sensitive to the electrical field induced by tDCS.


Subject(s)
Brain Injuries, Traumatic , Cerebrovascular Circulation , Transcranial Direct Current Stimulation , Animals , Brain/pathology , Brain Injuries, Traumatic/therapy , Cerebrovascular Circulation/physiology , Hypercapnia , Mice
13.
Acta Neurochir Suppl ; 126: 93-95, 2018.
Article in English | MEDLINE | ID: mdl-29492540

ABSTRACT

OBJECTIVE: High-frequency pulsed electromagnetic field (PEMF) stimulation is an emerging noninvasive therapy that we have shown increases cerebral blood flow (CBF) and tissue oxygenation in the healthy rat brain. In this work, we tested the effect of PEMF on the brain at high intracranial pressure (ICP). We previously showed that high ICP in rats caused a transition from capillary (CAP) to non-nutritive microvascular shunt (MVS) flow, tissue hypoxia and increased blood brain barrier (BBB) permeability. METHODS: Using in vivo two-photon laser scanning microscopy (2PLSM) over the rat parietal cortex, and studied the effects of PEMF on microvascular blood flow velocity, tissue oxygenation (NADH autofluorescence), BBB permeability and neuronal necrosis during 4 h of elevated ICP to 30 mmHg. RESULTS: PEMF significantly dilated arterioles, increased capillary blood flow velocity and reduced MVS/capillary ratio compared to sham-treated animals. These effects led to a significant decrease in tissue hypoxia, BBB degradation and neuronal necrosis. CONCLUSIONS: PEMF attenuates high ICP-induced pathological microcirculatory changes, tissue hypoxia, BBB degradation and neuronal necrosis.


Subject(s)
Blood-Brain Barrier/metabolism , Cerebrovascular Circulation/physiology , Hypoxia/metabolism , Intracranial Hypertension/therapy , Magnetic Field Therapy/methods , Microvessels/physiopathology , Parietal Lobe/blood supply , Permeability , Animals , Electromagnetic Fields , Hydroxyethylrutoside , Hypoxia/etiology , Intracranial Hypertension/complications , Intracranial Hypertension/metabolism , Intracranial Hypertension/physiopathology , Intravital Microscopy , Male , Microscopy, Confocal , Microvessels/pathology , Parietal Lobe/metabolism , Parietal Lobe/pathology , Rats , Rats, Sprague-Dawley
14.
J Cereb Blood Flow Metab ; 37(3): 762-775, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28155574

ABSTRACT

Cerebral ischemia has been clearly demonstrated after traumatic brain injury (TBI); however, neuroprotective therapies have not focused on improvement of the cerebral microcirculation. Blood soluble drag-reducing polymers (DRP), prepared from high molecular weight polyethylene oxide, target impaired microvascular perfusion by altering the rheological properties of blood and, until our recent reports, has not been applied to the brain. We hypothesized that DRP improve cerebral microcirculation and oxygenation after TBI. DRP were studied in healthy and traumatized rat brains and compared to saline controls. Using in-vivo two-photon laser scanning microscopy over the parietal cortex, we showed that after TBI, nanomolar concentrations of intravascular DRP significantly enhanced microvascular perfusion and tissue oxygenation in peri-contusional areas, preserved blood-brain barrier integrity and protected neurons. The mechanisms of DRP effects were attributable to reduction of the near-vessel wall cell-free layer which increased near-wall blood flow velocity, microcirculatory volume flow, and number of erythrocytes entering capillaries, thereby reducing capillary stasis and tissue hypoxia as reflected by a reduction in NADH. Our results indicate that early reduction in CBF after TBI is mainly due to ischemia; however, metabolic depression of contused tissue could be also involved.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Oxygen/metabolism , Polymers/pharmacology , Rheology , Animals , Brain Ischemia/physiopathology , Cerebrovascular Circulation/drug effects , Microcirculation/drug effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...