Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(27): e202303882, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37084076

ABSTRACT

The inherent formation of salt waste in C-H carboxylations is a key obstacle precluding the utilization of CO2 as C1 building block in the industrial synthesis of base chemicals. This challenge is addressed in a circular process for the production of the C4 base chemical dimethyl succinate from CO2 and acetylene. At moderate CO2 pressures, acetylene is doubly carboxylated in the presence of cesium carbonate. Hydrogenation of the C-C triple bond stabilizes the product against decarboxylation. By increasing the CO2 pressure to 70 bar, the medium is reversibly acidified, allowing an esterification of the succinate salt with methanol. The cesium base and the hydrogenation catalyst are regenerated and can be reused. This provides the proof of concept for a salt-free route to C4 chemicals from biogas (CH4 /CO2 ). The origin of this reversible acidity switch and the critical roles of the cesium base and the NMP/MeOH solvents were elucidated by thermodynamic modeling.

2.
Beilstein J Org Chem ; 14: 2737-2744, 2018.
Article in English | MEDLINE | ID: mdl-30498524

ABSTRACT

A convenient and sustainable three-step synthesis of the tyrosinase inhibitor 2-hydroxy-6-tridecylbenzoic acid was developed that starts directly from the anacardic acid component of natural cashew nutshell liquid (CNSL). Natural CNSL contains 60-70% of anacardic acid as a mixture of several double bond isomers. The anacardic acid component was converted into a uniform starting material by ethenolysis of the entire mixture and subsequent selective precipitation of 6-(ω-nonenyl)salicylic acid from cold pentane. The olefinic side chain of this intermediate was elongated by its cross-metathesis with 1-hexene using a first generation Hoveyda-Grubbs catalyst, which was reused as precatalyst in a subsequent hydrogenation step. Overall, the target compound was obtained in an overall yield of 61% based on the unsaturated anacardic acid content and 34% based on the crude CNSL.

3.
Chemistry ; 22(35): 12270-3, 2016 Aug 22.
Article in English | MEDLINE | ID: mdl-27379404

ABSTRACT

α-Diazo esters are smoothly converted into the corresponding trifluoromethyl thio- or selenoethers by reaction with Me4 NSCF3 or Me4 NSeCF3 , respectively, in the presence of catalytic amounts of copper thiocyanate. This straightforward method gives high yields under neutral conditions at room temperature and is applicable to a wide range of functionalized molecules, including diverse α-amino acid derivatives. It is well-suited for the late-stage introduction of trifluoromethylthio or -seleno groups into drug-like molecules.

4.
Angew Chem Int Ed Engl ; 55(24): 6933-7, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27112925

ABSTRACT

In the presence of catalytic [Ru(p-cym)I2 ]2 and the base guanidine carbonate, benzoic acids react with internal alkynes to give the corresponding 2-vinylbenzoic acids. This alkyne hydroarylation is generally applicable to diversely substituted electron-rich and electron-poor benzoic and acrylic acids. Aryl(alkyl)acetylenes react regioselectively with formation of the alkyl-branched hydroarylation products, and propargylic alcohols are converted into γ-alkylidene-δ-lactones. The hydroarylation can also be conducted decarboxylatively with a different choice of catalyst and reaction conditions. This reaction variant, which does not proceed via intermediate formation of 2-vinylbenzoic acids, opens up a regioselective, waste-minimized synthetic entry to vinylarenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...