Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37998361

ABSTRACT

The dysfunction and selective loss of retinal ganglion cells (RGCs) is a known cause of vision loss in glaucoma and other neuropathies, where ocular hypertension (OHT) is the major risk factor. We investigated the impact of transient non-ischemic OHT spikes (spOHT) on RGC function and viability in vivo to identify cellular pathways linking low-grade repetitive mechanical stress to RGC pathology. We found that repetitive spOHT had an unexpectedly high impact on intraocular homeostasis and RGC viability, while exposure to steady OHT (stOHT) of a similar intensity and duration failed to induce pathology. The repetitive spOHT induced the rapid activation of the inflammasome, marked by the upregulation of NLRP1, NLRP3, AIM2, caspases -1, -3/7, -8, and Gasdermin D (GSDMD), and the release of interleukin-1ß (IL-1ß) and other cytokines into the vitreous. Similar effects were also detected after 5 weeks of exposure to chronic OHT in an induced glaucoma model. The onset of these immune responses in both spOHT and glaucoma models preceded a 50% deficit in pattern electroretinogram (PERG) amplitude and a significant loss of RGCs 7 days post-injury. The inactivation of inflammasome complexes in Nlrp1-/-, Casp1-/-, and GsdmD-/- knockout animals significantly suppressed the spOHT-induced inflammatory response and protected RGCs. Our results demonstrate that mechanical stress produced by acute repetitive spOHT or chronic OHT is mechanistically linked to inflammasome activation, which leads to RGC dysfunction and death.


Subject(s)
Glaucoma , Ocular Hypertension , Animals , Intraocular Pressure , Retinal Ganglion Cells/metabolism , Inflammasomes/metabolism , Ocular Hypertension/metabolism , Glaucoma/metabolism
2.
PLoS One ; 16(5): e0242394, 2021.
Article in English | MEDLINE | ID: mdl-34048428

ABSTRACT

While albino mice are widely used in research which includes the use of visually guided behavioral tests, information on their visual capability is scarce. We compared the spatial resolution (acuity) of albino mice (BALB/c) with that of pigmented mice (C57BL/6J). We used a high-throughput pattern electroretinogram (PERG) and pattern visual evoked potential (PVEP) method for objective assessment of retinal and cortical acuity, as well as optomotor head-tracking response/ reflex (OMR). We found that PERG, PVEP, and OMR acuities of C57BL/6J mice were all in the range of 0.5-0.6 cycles/degree (cyc/deg). BALB/c mice had PERG and PVEP acuities in the range of 0.1-0.2 cyc/deg but were unresponsive to OMR stimulus. Results indicate that retinal and cortical acuity can be reliably determined with electrophysiological methods in BALB/c mice, although PERG/PVEP acuities are lower than those of C57BL/6J mice. The reduced acuity of BALB/c mice appears to be primarily determined at retinal level.


Subject(s)
Evoked Potentials, Visual/physiology , Retina/physiology , Vision, Ocular/physiology , Visual Acuity/physiology , Animals , Electroretinography , Evoked Potentials, Visual/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Retina/diagnostic imaging , Vision, Ocular/genetics , Visual Acuity/genetics , Visual Pathways
SELECTION OF CITATIONS
SEARCH DETAIL
...