Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903117

ABSTRACT

The goal of this stydy was to explore the potential of the enhanced corrosion resistance of Ti(N,O) cathodic arc evaporation-coated 304L stainless steel using oxide nano-layers deposited by atomic layer deposition (ALD). In this study, we deposited Al2O3, ZrO2, and HfO2 nanolayers of two different thicknesses by ALD onto Ti(N,O)-coated 304L stainless steel surfaces. XRD, EDS, SEM, surface profilometry, and voltammetry investigations of the anticorrosion properties of the coated samples are reported. The amorphous oxide nanolayers homogeneously deposited on the sample surfaces exhibited lower roughness after corrosion attack compared to the Ti(N,O)-coated stainless steel. The best corrosion resistance was obtained for the thickest oxide layers. All samples coated with thicker oxide nanolayers augmented the corrosion resistance of the Ti(N,O)-coated stainless steel in a saline, acidic, and oxidising environment (0.9% NaCl + 6% H2O2, pH = 4), which is of interest for building corrosion-resistant housings for advanced oxidation systems such as cavitation and plasma-related electrochemical dielectric barrier discharge for breaking down persistent organic pollutants in water.

2.
ACS Appl Mater Interfaces ; 12(50): 56161-56171, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33275429

ABSTRACT

The development of short-wave infrared (SWIR) photonics based on GeSn alloys is of high technological interest for many application fields, such as the Internet of things or pollution monitoring. The manufacture of crystalline GeSn is a major challenge, mainly because of the low miscibility of Ge and Sn. The use of embedded GeSn nanocrystals (NCs) by magnetron sputtering is a cost-effective and efficient method to relax the growth conditions. We report on the use of GeSn/SiO2 multilayer deposition as a way to control the NC size and their insulation. The in situ prenucleation of NCs during deposition was followed by ex situ rapid thermal annealing. The nanocrystallization of 20×(11nm_Ge0.865Sn0.135/1.5nm_SiO2) multilayers leads to formation of GeSn NCs with ∼16% Sn concentration and ∼9 nm size. Formation of GeSn domes that are vertically correlated contributes to the nanocrystallization process. The absorption limit of ∼0.4 eV in SWIR found by ellipsometry is in agreement with the spectral photosensitivity. The ITO/20×(GeSn NC/SiO2)/p-Si/Al diodes show a maximum value of the SWIR photosensitivity at a reverse voltage of 0.5 V, with extended sensitivity to wavelengths longer than 2200 nm. The multilayer diodes have higher photocurrent efficiency compared to diodes based on a thick monolayer of GeSn NCs.

3.
Materials (Basel) ; 13(19)2020 Oct 05.
Article in English | MEDLINE | ID: mdl-33027934

ABSTRACT

The development of durable photocatalytic supports resistant in harsh environment has become challenging in advanced oxidation processes (AOPs) focusing on water and wastewater remediation. In this study, stainless steel (SS), SS/Ti (N,O) and SS/Cr-N/Cr (N,O) anticorrosion layers on SS meshes were dip-coated with sol gel synthesised C-N-TiO2 photo catalysts pyrolysed at 350 °C for 105 min, using a heating rate of 50 °C/min under N2 gas. The supported C-N-TiO2 films were characterised by scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy. The results showed that C-N-TiO2 was successfully deposited on anticorrosion coated SS supports and had different morphologies. The amorphous C and TiO2 were predominant in C-N-TiO2 over anatase and rutile phases on the surface of SS and anticorrosion supports. The C-N-TiO2 coated films showed enhanced photocatalytic activity for the decolouration of O.II dye under both solar and UV radiation. The fabricated C-N-TiO2 films showed significant antibacterial activities in the dark as well as in visible light. Herein, we demonstrate that SS/Ti(N,O) and SS/Cr-N/Cr(N,O) anticorrosion coatings are adequate photocatalytic and corrosion resistant supports. The C-N-TiO2 photo catalytic coatings can be used for water and wastewater decontamination of pollutants and microbes.

4.
ACS Appl Mater Interfaces ; 12(30): 33879-33886, 2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32633935

ABSTRACT

GeSn alloys have the potential of extending the Si photonics functionality in shortwave infrared (SWIR) light emission and detection. Epitaxial GeSn layers were deposited on a relaxed Ge buffer on Si(100) wafer by using high power impulse magnetron sputtering (HiPI-MS). Detailed X-ray reciprocal space mapping and HRTEM investigations indicate higher crystalline quality of GeSn epitaxial layers deposited by Ge HiPI-MS compared to commonly used radio frequency magnetron sputtering (RF-MS). To obtain a rectifying heterostructure for SWIR light detection, a layer of GeSn nanocrystals (NCs) embedded in oxide was deposited on the epitaxial GeSn one. Embedded GeSn NCs are obtained by cosputtering deposition of (Ge1-xSnx)1-y(SiO2)y layers and subsequent rapid thermal annealing at a low temperature of 400 °C. Intrinsic GeSn structural defects give p-type behavior, while the presence of oxygen leads to the n-character of the embedded GeSn NCs. Such an embedded NCs/epitaxial GeSn p-n heterostructure shows superior photoelectrical response up to 3 orders of magnitude increase in the 1.2-2.5 µm range, as compared to performances of diode based only on embedded NCs.

5.
Nanomaterials (Basel) ; 8(3)2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29518968

ABSTRACT

In this work, we applied advanced Synchrotron Radiation (SR) induced techniques to the study of the chemisorption of the Self Assembling Peptide EAbuK16, i.e., H-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-Abu-Glu-Abu-Glu-Abu-Lys-Abu-Lys-NH2 that is able to spontaneously aggregate in anti-parallel ß-sheet conformation, onto annealed Ti25Nb10Zr alloy surfaces. This synthetic amphiphilic oligopeptide is a good candidate to mimic extracellular matrix for bone prosthesis, since its ß-sheets stack onto each other in a multilayer oriented nanostructure with internal pores of 5-200 nm size. To prepare the biomimetic material, Ti25Nb10Zr discs were treated with aqueous solutions of EAbuK16 at different pH values. Here we present the results achieved by performing SR-induced X-ray Photoelectron Spectroscopy (SR-XPS), angle-dependent Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, FESEM and AFM imaging on Ti25Nb10Zr discs after incubation with self-assembling peptide solution at five different pH values, selected deliberately to investigate the best conditions for peptide immobilization.

6.
Biomed Mater ; 13(2): 025011, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29381477

ABSTRACT

Hydroxyapatite (HAP) coatings are applied on metallic implant materials to combine mechanical properties of metallic material with bioactivity abilities of HAP ceramic. In this study, HAP coatings with additions of Si and Mg are proposed to be deposited on Ti6Al4V substrates by RF magnetron sputtering. Chemical bonding, morphology, topography and corrosion resistance in simulated body fluids (SBF) of the coatings were investigated. Additionally, mechanical and biological properties of the coatings were evaluated. It was found that the addition of Si and Mg does not influence the formation of a HAP phase. All the coatings exhibited smooth surface and uniform growth, without defects or cracks. Both hardness and elastic modulus of the coated samples decrease with Mg addition in the HAP-Si structure. Both Mg and Si addition into HAP coatings were found to enhance the corrosion resistance of the Ti6Al4V alloy in the SBF solution. Coatings with low Mg content exhibited better corrosion performance. All the coatings investigated were biocompatible, as demonstrated by SaOS-2 bone cell attachment and growth. However, cell proliferation and morphology were inferior on samples with the highest Mg content.


Subject(s)
Coated Materials, Biocompatible/chemistry , Durapatite/chemistry , Magnesium/chemistry , Silicon/chemistry , Alloys , Body Fluids/metabolism , Bone and Bones , Cell Adhesion , Cell Line, Tumor , Cell Proliferation , Corrosion , Elasticity , Electrochemical Techniques , Hardness , Humans , Materials Testing , Microscopy, Fluorescence , Osteoblasts/cytology , Osteoblasts/drug effects , Stress, Mechanical , Surface Properties , Titanium/chemistry , X-Ray Diffraction
7.
Sci Rep ; 7(1): 16819, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29196637

ABSTRACT

Properties of the hydroxyapatite obtained by electrochemical assisted deposition (ED) are dependent on several factors including deposition temperature, electrolyte pH and concentrations, applied potential. All of these factors directly influence the morphology, stoichiometry, crystallinity, electrochemical behaviour, and particularly the coating thickness. Coating structure together with surface micro- and nano-scale topography significantly influence early stages of the implant bio-integration. The aim of this study is to analyse the effect of pH modification on the morphology, corrosion behaviour and in vitro bioactivity and in vivo biocompatibility of hydroxyapatite prepared by ED on the additively manufactured Ti64 samples. The coatings prepared in the electrolytes with pH = 6 have predominantly needle like morphology with the dimensions in the nanometric scale (~30 nm). Samples coated at pH = 6 demonstrated higher protection efficiency against the corrosive attack as compared to the ones coated at pH = 5 (~93% against 89%). The in vitro bioactivity results indicated that both coatings have a greater capacity of biomineralization, compared to the uncoated Ti64. Somehow, the coating deposited at pH = 6 exhibited good corrosion behaviour and high biomineralization ability. In vivo subcutaneous implantation of the coated samples into the white rats for up to 21 days with following histological studies showed no serious inflammatory process.

8.
PLoS One ; 11(8): e0161151, 2016.
Article in English | MEDLINE | ID: mdl-27571361

ABSTRACT

In the current study, we have examined the possibility to improve the biocompatibility of the (TiZrNbTaHf)C through replacement of either Ti or Ta by Si. The coatings were deposited on Si and 316L stainless steel substrates by magnetron sputtering in an Ar+CH4 mixed atmosphere and were examined for elemental composition, chemical bonds, surface topography, surface electrical charge and biocompatible characteristics. The net surface charge was evaluated at nano and macroscopic scale by measuring the electrical potential and work function, respectively. The biocompatible tests comprised determination of cell viability and cell attachment to the coated surface. The deposited coatings had C/(metal+Si) ratios close to unity, while a mixture of metallic carbide, free-carbon and oxidized species formed on the film surface. The coatings' surfaces were smooth and no influence of surface roughness on electrical charge or biocompatibility was found. The biocompatible characteristics correlated well with the electrical potential/work function, suggesting a significant role of surface charge in improving biocompatibility, particularly cell attachment to coating's surface. Replacement of either Ti or Ta by Si in the (TiZrNbTaHf)C coating led to an enhanced surface electrical charge, as well as to superior biocompatible properties, with best results for the (TiZrNbSiHf)C coating.


Subject(s)
Alloys/chemistry , Coated Materials, Biocompatible/chemistry , Silicon/chemistry , Tantalum/chemistry , Titanium/chemistry , Alloys/adverse effects , Coated Materials, Biocompatible/adverse effects , Materials Testing , Surface Properties , Tantalum/adverse effects , Titanium/adverse effects , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...