Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 10(12)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38135931

ABSTRACT

This case study assesses the valorization of industrial wastewater streams for bioenergy generation in an industrial munition facility. On-site pilot-scale demonstrations were performed to investigate the feasibility of algal growth in the target wastewater on a larger outdoor scale. An exploratory field study followed by an optimized one were carried out using two 1000 L open raceway ponds deployed within a greenhouse at an industrial munition facility. An online system allowed for constant monitoring of operational parameters such as temperature, pH, light intensity, and dissolved oxygen within the ponds. The original algal seed evolved into an open-air resilient consortium of green microalgae and cyanobacteria that were identified and characterized successfully. Weekly measurements of the level of nutrients in pond liquors were performed along with the determination of the algal biomass to quantitatively evaluate growth yields. After harvesting algae from the ponds, the biomass was concentrated and evaluated for oil content and biochemical methane potential (BMP) to provide an estimate of the algae-based energy production. Additionally, the correlation among biomass, culturing conditions, oil content, and BMP was evaluated. The higher average areal biomass productivity achieved during the summer months was 23.9 ± 0.9 g/m2d, with a BMP of 350 scc/gVS. An oil content of 22 wt.% was observed during operation under low nitrogen loads. Furthermore, a technoeconomic analysis and life cycle assessment demonstrated the viability of the proposed wastewater valorization scenario and aided in optimizing process performance towards further scale-up.

2.
Environ Sci Pollut Res Int ; 25(24): 24403-24416, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29909531

ABSTRACT

The manufacturing of insensitive munition 2,4-dinitroanisole (DNAN) generates waste streams that require treatment. DNAN has been treated previously with zero-valent iron (ZVI) and Fe-based bimetals. Use of Mg-based bimetals offers certain advantages including potential higher reactivity and relative insensitivity to pH conditions. This work reports preliminary findings of DNAN degradation by three Mg-based bimetals: Mg/Cu, Mg/Ni, and Mg/Zn. Treatment of DNAN by all three bimetals is highly effective in aqueous solutions (> 89% removal) and wastewater (> 91% removal) in comparison with treatment solely with zero-valent magnesium (ZVMg; 35% removal). Investigation of reaction byproducts supports a partial degradation pathway involving reduction of the ortho or para nitro to amino group, leading to 2-amino-4-nitroanisole (2-ANAN) and 4-amino-2-nitroanisole (4-ANAN). Further reduction of the second nitro group leads to 2,4-diaminoanisole (DAAN). These byproducts are detected in small quantities in the aqueous phase. Carbon mass balance analysis suggests near-complete closure (91%) with 12.4 and 78.4% of the total organic carbon (TOC) distributed in the aqueous and mineral bimetal phases, respectively. Post-treatment surface mineral phase analysis indicates Mg(OH)2 as the main oxidized species; oxide formation does not appear to impair treatment.


Subject(s)
Anisoles/chemistry , Metals/chemistry , Water Pollutants, Chemical/chemistry , Carbon/chemistry , Explosive Agents/chemistry , Magnesium/chemistry , Microscopy, Electron, Scanning , Oxidation-Reduction , Oxides/chemistry , Wastewater/chemistry , X-Ray Diffraction
3.
Article in English | MEDLINE | ID: mdl-22702813

ABSTRACT

A cold, electrodeless method was used to prepare bimetals (Fe/Cu, Fe/Ni) and trimetals (Fe/Cu/Ni) for the treatment of trichloroethylene (TCE). With Fe/Cu, the degradation of TCE was observed to increase with increasing copper content up to 9.26 % (w/w) with a first-order degradation rate constant approximately 10 times faster than that of zero-valent iron (ZVI) alone. For copper content greater than 9.26 %, the TCE degradation rate decreased. Dechlorinated compounds were initially observed but they were transitory and accounted for no more than 9 % of initial TCE mass on a carbon molar basis. Ethylene was the primary end product of TCE reduction. Similarly for Fe/Ni, increasing rates of degradation were observed with increasing amounts of nickel with a maximum degradation rate constant of about 30 times higher than that of ZVI alone. However, the amount of nickel needed to reach the maximum rate was only 0.25 %. When copper and nickel were plated onto iron, the maximum reaction rate constant was approximately 50 times higher than that of ZVI. The maximum degradation of TCE was observed for a copper and nickel content of 4.17 % and 0.40 %, respectively. The experimental results indicated that TCE degradation was enhanced by more than one order of magnitude when copper and/or nickel was plated onto the zero-valent iron. However, copper or nickel plated onto iron by the elctrodeless process was found to leach out during the reaction which may, in turn, impact the contaminated water.


Subject(s)
Trichloroethylene/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Copper/chemistry , Flame Ionization , Iron/chemistry , Nickel/chemistry
4.
J Hazard Mater ; 219-220: 75-81, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22520073

ABSTRACT

A reductive technology based on a completely mixed two-phase reactor (bimetallic particles and aqueous stream) was developed for the treatment of aqueous effluents contaminated with nitramines and nitro-substituted energetic materials. Experimental degradation studies were performed using solutions of three high energetics (RDX, HMX, TNT) and three insensitive-munitions components (NTO, NQ, DNAN). The study shows that, on laboratory scale, these energetic compounds are easily degraded in solution by suspensions of bimetallic particles (Fe/Ni and Fe/Cu) prepared by electro-less deposition. The type of bimetal pair (Fe/Cu or Fe/Ni) does not appear to affect the degradation kinetics of RDX, HMX, and TNT. The degradation of all components followed apparent first-order kinetics. The half-lives of all compounds except NTO were under 10 min. Additional parameters affecting the degradation processes were solids loading and initial pH.


Subject(s)
Copper/chemistry , Explosive Agents/chemistry , Iron/chemistry , Kinetics , Oxidation-Reduction
5.
Chemosphere ; 86(10): 1001-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22155209

ABSTRACT

This study investigates the dissolution, sorption, leachability, and plant uptake of tungsten and alloying metals from canister round munitions in the presence of model, well characterized soils. The source of tungsten was canister round munitions, composed mainly of tungsten (95%) with iron and nickel making up the remaining fraction. Three soils were chosen for the lysimeter studies while four model soils were selected for the adsorption studies. Lysimeter soils were representatives of the typical range of soils across the continental USA; muck-peat, clay-loamy and sandy-quartzose soil. Adsorption equilibrium data on the four model soils were modeled with Langmuir and linear isotherms and the model parameters were obtained. The adsorption affinity of soils for tungsten follows the order: Pahokee peat>kaolinite>montmorillonite>illite. A canister round munition dissolution study was also performed. After 24 d, the measured dissolved concentrations were: 61.97, 3.56, 15.83 mg L(-1) for tungsten, iron and nickel, respectively. Lysimeter transport studies show muck peat and sandy quartzose soils having higher tungsten concentration, up to 150 mg kg(-1) in the upper layers of the lysimeters and a sharp decline with depth suggesting strong retardation processes along the soil profile. The concentrations of tungsten, iron and nickel in soil lysimeter effluents were very low in terms of posing any environmental concern; although no regulatory limits have been established for tungsten in natural waters. The substantial uptake of tungsten and nickel by ryegrass after 120 d of exposure to soils containing canister round munition suggests the possibility of tungsten and nickel entering the food chain.


Subject(s)
Soil Pollutants/chemistry , Soil/chemistry , Tungsten/chemistry , Adsorption , Kinetics , Lolium/metabolism , Models, Chemical , Nickel/analysis , Nickel/chemistry , Nickel/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Tungsten/analysis , Tungsten/metabolism
6.
Langmuir ; 27(22): 13773-9, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21967647

ABSTRACT

2,4-Dinitroanisole (DNAN) is being used as a replacement for 2,4,6-trinitrotoluene (TNT) as a less-sensitive melt-cast medium explosive than TNT. In this paper, we studied the surface-enhanced Raman spectroscopy (SERS) analysis of DNAN using Ag nanoparticles (AgNPs) modified by L-cysteine methyl ester hydrochloride. Due to the formation of a Meisenheimer complex between DNAN and the modifier, the modified AgNPs can detect 20 µg/L (0.2 ng) and 0.1 mg/L (1 ng) DNAN in deionized water and aged tap water, respectively. Three other chemicals (L-cysteine, N-acetyl-L-cysteine, and L-cysteine ethyl ester hydrochloride) were used as AgNPs modifiers to study the mechanism of the SERS of DNAN. It was confirmed that the amino group of L-cysteine methyl ester hydrochloride was the active group and that the methyl ester group significantly contributed to the high SERS sensitivity of DNAN. In order to further test the mechanism of Meisenheimer complex formation, the effect of anions and cations present in natural water on the SERS of DNAN was studied. It was found that CO(3)(2-), Cl(-), and K(+) at 100 mg/L did not negatively affect the SERS of 10 mg/L DNAN, while SO(4)(2-), Na(+), Mg(2+), and Ca(2+) at 100 mg/L significantly quenched the SERS of 10 mg/L DNAN. The negative effect of the bivalent cations could be offset by SO(4)(2-).

7.
J Am Soc Mass Spectrom ; 20(10): 1782-9, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19631558

ABSTRACT

The presence of a peak centered near m/z 2862, observed for the first time for the caged dodecatungstate radical-anion, [W12O41]-*, enables distinguishing WO2 from WO3 by Laser Desorption Ionization mass spectrometry (LDI-MS). In addition to WO2, laser irradiation of dry deposits made from aqueous ammonium paratungstate, and calcium and lead orthotungstate also produce the [W12O41]-. In contrast, spectra recorded from deposits made from aqueous Na2WO4, sodium metatungstate, and WO3, or non-aqueous calcium and lead orthotungstate, and ammonium paratungstate, failed to show the m/z 2862 peak cluster. These observations support the hypothesis that polycondensation reactions to form [W12O41]-* occur solely in the presence of water. Although dry spots are irradiated for ionization, the solvent used for sample preparation plays an important role on the chemical composition endowed to ions detected. For example, the m/z 2862 peak seen from deposits made from aqueous ammonium paratungstate, and calcium and lead orthotungstate, is absent in the spectra recorded either from pristine deposits or those derived from solutions made with organic solvents such as acetonitrile or ethanol.


Subject(s)
Oxides/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tungsten Compounds/chemistry , Tungsten/chemistry , Acetonitriles/chemistry , Anions/chemistry , Ethanol/chemistry , Gases/chemistry , Water/chemistry
8.
Environ Res ; 106(3): 296-303, 2008 Mar.
Article in English | MEDLINE | ID: mdl-17537426

ABSTRACT

Nano-aluminum is being used in increasing quantities as energetic material. This research addresses the transport of two types of nanosized aluminum particles (with aluminum oxide, or carboxylate ligand coating, Alex and L-Alex, respectively) through sand columns along with associated environmental impacts on soil systems. Surface phenomena and pH are variables controlling the transport of nano-aluminum particles through porous media. pH environment controls solubility and electrostatic interactions between nano-aluminum particles and porous media. (i.e., changes in point of zero charge, agglomeration, etc.). Concentrations (up to 17 mg/L) far greater than the World Health Organization guideline for Al in drinking water (0.2 mg/L) were measured in columns' leachates. Plant uptake studies, mineralization of radiolabeled glucose test and Microtox test were used to investigate the environmental impacts of nano-aluminum on soil communities and plants. It appears that the presence of nano-aluminum particles did not have an adverse effect on the growth of California red kidney bean (Phaseolus vulgaris) and rye grass (Lolium perenne) plants in the concentration range tested. California red beans did not show uptake of aluminum, while the situation was different for rye grass where a 2.5-fold increase in Al concentration in the leaves was observed as compared with control tests. Nano-aluminum particles in suspension do not appear to have an impact on the metabolic activity of Vibrio fischeri. However, when the nano-aluminum particles were amended to the soil, Alex aluminum resulted in a 50% reduction of light output at concentrations below 5000 mg/L soil suspension concentration while L-Alex showed a similar effect at around 17,500 mg/L and the control soil at 37,500 mg/L. Soil respiration studies show that there are not statistical differences between the time and sizes of peaks in CO(2) production and the total mineralization of glucose.


Subject(s)
Aluminum Oxide/chemistry , Ecotoxicology , Fabaceae/drug effects , Lolium/drug effects , Metal Nanoparticles/chemistry , Soil Pollutants/chemistry , Aliivibrio fischeri/drug effects , Aliivibrio fischeri/metabolism , Aluminum Oxide/pharmacokinetics , Aluminum Oxide/toxicity , Fabaceae/growth & development , Fabaceae/metabolism , Glucose/metabolism , Hydrogen-Ion Concentration , Lolium/metabolism , Metal Nanoparticles/toxicity , Soil Microbiology , Soil Pollutants/pharmacokinetics , Soil Pollutants/toxicity , Solubility
9.
J Hazard Mater ; 149(3): 562-7, 2007 Nov 19.
Article in English | MEDLINE | ID: mdl-17686582

ABSTRACT

Tungsten-based alloys and composites are being used and new formulations are being considered for use in the manufacturing of different types of ammunition. The use of tungsten heavy alloys (WHA) in new munitions systems and tungsten composites in small caliber ammunition could potentially release substantial amounts of this element into the environment. Although tungsten is widely used in industrial and military applications, tungsten's potential environmental and health impacts have not been thoroughly addressed. This necessitates the research and development of remedial technologies to contain and/or remove tungsten from soils that may serve as a source for water contamination. The current work investigates the feasibility of using electrokinetics for the remediation of tungsten-contaminated soils in the presence of other heavy metals of concern such as Cu and Pb with aim to removing W from the soil while stabilizing in situ, Pb and Cu.


Subject(s)
Electrochemistry/methods , Environmental Pollution , Soil Pollutants/analysis , Tungsten/analysis , Adsorption , Biodegradation, Environmental , Copper/analysis , Electrolytes , Hazardous Waste , Kinetics , Lead/analysis , Metals, Heavy/analysis , Soil , Titanium/chemistry , Weapons
11.
Chemosphere ; 64(8): 1325-33, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16466766

ABSTRACT

The mobility of Mo in soils and sediments depends on several factors including soil mineralogy and the presence of other oxyanions that compete with Mo for the adsorbent's retention sites. Batch experiments addressing Mo adsorption onto goethite were conducted with phosphate, sulfate, silicate, and tungstate as competing anions in order to produce competitive two anions adsorption envelopes, as well as competitive two anions adsorption isotherms. Tungstate and phosphate appear to be the strongest competitors of Mo for the adsorption sites of goethite, whereas little competitive effects were observed in the case of silicate and sulfate. Mo adsorption isotherm from a phosphate solution was similar to the one from a tungstate solution. The charge distribution multi-site complexation (CD-MUSIC) model was used to predict competitive adsorption between MoO(4)(2-) and other anions (i.e., phosphate, sulfate, silicate and tungstate) using model parameters obtained from the fitting of single ion adsorption envelopes. CD-MUSIC results strongly agree with the experimental adsorption envelopes of molybdate over the pH range from 3.5 to 10. Furthermore, CD-MUSIC prediction of the molybdate adsorption isotherm show a satisfactory fit of the experimental results. Modeling results suggest that the diprotonated monodentate complexes, FeOW(OH)(5)(-0.5) and FeOMo(OH)(5)(-0.5), were respectively the dominant complexes of adsorbed W and Mo on goethite 110 faces at low pH. The model suggests that Mo and W are retained mainly by the formation of monodentate complexes on the goethite surface. Our results indicate that surface complexation modeling may have applications in predicting competitive adsorption in more complex systems containing multiple competing ions.


Subject(s)
Anions/analysis , Iron Compounds/chemistry , Models, Chemical , Molybdenum/analysis , Soil Pollutants/analysis , Adsorption , Minerals , Phosphates/analysis , Silicates/analysis , Sulfates/analysis , Surface Properties , Tungsten Compounds/analysis
12.
Environ Pollut ; 139(2): 353-61, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16024150

ABSTRACT

CL-20 is a relatively new energetic compound with applications in explosive and propellant formulations. Currently, information about the fate of CL-20 in ecological systems is scarce. The aim of this study is to evaluate the biodegradability of CL-20 in soil environments. Four soils were used where initial CL-20 concentrations (above water solubility) ranged from 125 to 1500 mg of CL-20 per kg dry soil (corresponding to the concentrations derived from unexploded ordnance, low order detonation, or manufacturing spills). CL-20 appears to be biodegradable in soil under anaerobic conditions, and additions of organic substrates can substantially accelerate this process. However, CL-20 is not degraded in soil under aerobic conditions kept in the dark at temperatures up to 30 degrees C without organic amendments. Additions of starch or cellulose promote the biodegradation of CL-20 under aerobic conditions. Soil microbial community mediated biodegradation and plant uptake appears to enhance CL-20 biodegradation, the latter suggesting a possible route for CL-20 to entry in the food chain.


Subject(s)
Bridged-Ring Compounds/chemistry , Industrial Waste , Nitro Compounds/chemistry , Plant Physiological Phenomena , Soil Microbiology , Soil Pollutants , Aerobiosis , Anaerobiosis , Biodegradation, Environmental , Ecosystem , Hydrogen-Ion Concentration , Time Factors
13.
Chemosphere ; 62(10): 1726-35, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16084558

ABSTRACT

The adsorption of two major molybdenum (Mo) species, molybdate (MoO4(2-)) and tetrathiomolybdate (MoS4(2-)) onto two main iron minerals pyrite (FeS2) and goethite (FeOOH) is addressed to elucidate the possible mechanisms of molybdenum immobilization in anoxic sediments. Suspensions of MoS4(2-) (or MoO4(2-)) and goethite (or pyrite) in 0.1M NaCl solution were equilibrated under anoxic conditions at 25 degrees C in the pH range from 3 to 10. The competitive effects of sulfate, phosphate, and silicate on the adsorption of MoO4(2-) and MoS4(2-) by pyrite and goethite are also addressed. Adsorption of MoO4(2-) and MoS4(2-) on pyrite and goethite is in general well described by a Langmuir model at low pH; the extent of sorption is a function of pH and the surface loading. Maximum sorption is observed in the acidic pH range (pH<5) at low surface loading. The adsorption of molybdenum (micromol g(-1)) depends upon Mo species and on the type of iron mineral following the order: MoS4(2-)-goethite > MoO4(2-)-goethite > MoS4(2-)-pyrite > MoO4(2-)-pyrite. Phosphate appears to compete strongly with MoO4(2-) and MoS4(2-) for the sorption sites of pyrite and goethite. The strength of the phosphate competitive effect follows the sequence of MoO4(2-)-goethite approximately = MoO4(2-)-pyrite > MoS4(2-)-pyrite > MoS4(2-)-goethite. Silicate and sulfate have a negligible effect on the sorption of MoO4(2-) and MoS4(2-). The preferred adsorption by iron mineral of MoS4(2-), as well as its behavior in the presence of competitive anions suggests that tetrathiomolybdate species may be an ultimate reservoir and may control Mo enrichment in the sediments.


Subject(s)
Anions/chemistry , Iron Compounds/chemistry , Iron/chemistry , Molybdenum/analysis , Sulfides/chemistry , Adsorption , Hydrogen-Ion Concentration , Minerals , Surface Properties
14.
Chemosphere ; 61(2): 248-58, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16168748

ABSTRACT

Tungsten is a metal with many industrial and military applications, including manufacturing of commercial and military ammunition. Despite its widespread use, the potential environmental effects of tungsten are essentially unknown. This study addresses environmental effects of particulate and soluble forms of tungsten, and to a minor extent certain tungsten alloy components, present in some munitions formulations. Dissolution of tungsten powder significantly acidifies soils. Tungsten powder mixed with soils at rates higher than 1% on a mass basis, trigger changes in soil microbial communities resulting in the death of a substantial portion of the bacterial component and an increase of the fungal biomass. It also induces the death of red worms and plants. These effects appear to be related with the soil acidification occurring during tungsten dissolution. Dissolved tungsten species significantly decrease microbial yields by as much as 38% for a tungsten media concentration of 89 mg l(-1). Soluble tungsten concentrations as low as 10(-5) mg l(-1), cause a decrease in biomass production by 8% which is possibly related to production of stress proteins. Plants and worms take up tungsten ions from soil in significant amounts while an enrichment of tungsten in the plant rhizosphere is observed. These results provide an indication that tungsten compounds may be introduced into the food chain and suggest the possibility of development of phytoremediation-based technologies for the cleanup of tungsten contaminated sites.


Subject(s)
Food Chain , Soil Microbiology , Soil Pollutants/toxicity , Tungsten/toxicity , Animals , Bacteria/growth & development , Biodegradation, Environmental , Biomass , Fungi/growth & development , Mortality , Oligochaeta/chemistry , Plants/chemistry , Soil Pollutants/isolation & purification , Soil Pollutants/pharmacokinetics , Tungsten/isolation & purification , Tungsten/pharmacokinetics
15.
Environ Toxicol Chem ; 23(7): 1585-91, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15230309

ABSTRACT

Bioavailability is an important consideration in risk assessment of soil contaminants and in the selection of appropriate remediation technologies for polluted sites. The present study examined the bioavailability and biodegradation potential of phenanthrene with respect to a pseudomonad in 15 different soils through separate measurements of mineralization, transformation, and desorption to a polymeric infinite sink (Tenax) after 180-d sterile pre-equilibration with phenanthrene. Fractions strongly resistant to desorption and mineralization at long times were evident in all cases. After correcting for bioconversion (moles mineralized per mole transformed) determined in aqueous particle-free soil extracts, a correlation was found between the biotransformation-resistant fraction and the Tenax desorption-resistant fraction. Indices are proposed to assess bioavailability (BAt) and biotransformation potential (BTPt) of a compound in a soil based on parallel desorption and degradation studies over a selected period t. The BAt is the ratio of moles biotransformed to moles desorbed to an infinite sink, and it reflects the biotransformation rate relative to the maximal desorption rate. Values of BA30 (30-d values) ranged from 0.64 (for dark gray silt loam) to 1.12 (Wurtsmith Air Force Base [AFB] 2B, Oscoda, MI, USA). The BTPt is the ratio between moles biotransformed and moles of contaminant remaining sorbed after maximal desorption. The BTPt provides an indication of the maximum extent of biotransformation that may be expected in a system, assuming desorption is a prerequisite for biodegradation. Values of BTP30 ranged between 0.3 (Wurtsmith AFB 1B) and 13 (Mount Pleasant silt loam, NY, USA). The combination of BAt and BTPt provides insights regarding the relationship between physical availability (desorption) and biological processes (biotransformation kinetics, toxicity, other soil factors) that occur during biodegradation and are suggested to represent the remediation potential of the chemical. The BA30 values less than 0.9 and BTP30 values less than five indicate poor potential for site remediation.


Subject(s)
Biotransformation , Soil Pollutants/pharmacokinetics , Soil/analysis , Adsorption , Biological Availability , Environmental Monitoring , Geography , Kinetics , Phenanthrenes/metabolism , Phenanthrenes/pharmacokinetics , Pseudomonas/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism
16.
Environ Sci Technol ; 37(2): 409-17, 2003 Jan 15.
Article in English | MEDLINE | ID: mdl-12564916

ABSTRACT

Charcoal is found in water, soil, and sediment where it may act as a sorbent of organic pollutants. The sorption of organic compounds to natural solids often shows hysteresis. The purpose of this study was to determine the source of pronounced hysteresis that we found in the sorption of a hydrophobic compound (benzene) in water to a maple-wood charcoal prepared by oxygen-limited pyrolysis at 673 K. Gas adsorption (N2, Ar, CO2), 13C NMR, and FTIR show the charcoal to be a microporous solid composed primarily of elemental (aromatic) C and secondarily of carboxyl and phenolic C. Nonlocal density functional theory (N2, Ar) and Monte Carlo (CO2) calculations reveal a porosity of 0.15 cm3/g, specific surface area of 400 m2/g, and appreciable porosity in ultramicropores < 10 A. Benzene sorption-desorption conditions were chosen to eliminate artificial causes of hysteresis (rate-limiting diffusion, degradation, colloids effect). Charcoal sorbed up to its own weight of benzene at approximately 69% of benzene water solubility. Sorption was highly irreversible over most of the range tested (10(-4)-10(3) microg/mL). A dimensionless irreversibility index (/i) (0 < or = /i < or = 1) based on local slopes of adsorption and desorption branches was evaluated at numerous places along the isotherm. /i decreases as C increases, from 0.9-1 at low concentration to approximately 0 (approximately fully reversible) at the highest concentrations. Using sedimentation and volumetric displacement measurements, benzene is observed to cause pronounced swelling (up to > 2-fold) of the charcoal particles. It is proposed that hysteresis is due to pore deformation by the solute, which results in the pathway of sorption being different than the pathway of desorption and which leads to entrapment of some adsorbate as the polyaromatic scaffold collapses during desorption. It is suggested that intra-charcoal mass transport may be influenced by structural rearrangement of the solid, in addition to molecular diffusion.


Subject(s)
Benzene/chemistry , Charcoal/chemistry , Models, Chemical , Adsorption , Diffusion , Environmental Pollutants , Porosity , Solubility
17.
Environ Toxicol Chem ; 21(12): 2573-80, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12463551

ABSTRACT

Sorption-desorption kinetics play a major role in transport and bioavailability of pollutants in soils. Contaminant concentration is a potentially important factor controlling kinetics. A previous paper dealt with the effect of solute concentration on fractional uptake rates of phenanthrene and pyrene from a finite aqueous source. In this study we determined the effect of initial phenanthrene sorbed concentration (q(0)) on the fractional mass desorption rates from each of six soils to a zero-concentration solution, approximated by including a polymer adsorbent (Tenax) as a third-phase sink. The soils were preequilibrated with phenanthrene for 180 d. Consistent with theory, the fractional desorption rates determined by empirical curve fitting increased with q(0) provided the isotherm was nonlinear. After 500 to 600 d of desorption at the steepest possible concentration gradient, all soils retained a highly resistant fraction, which ranged from 4 to 31% of q(0), except for one soil at a high q(0). The highly resistant fraction decreased with increasing q(0), for nonlinear isotherm cases, but increased with q(0) for linear or nearly linear isotherm cases. Application of a nonlinear diffusion model, the dual-mode diffusion model (DMDM), to the nonresistant fraction gave reasonably good fits. The DMDM attributes the increase with concentration of the apparent diffusivity to a decrease in the proportion of sorbate occupying immobile sites (holes) in soil organic matter. The concentration-dependent term in the expression for the apparent diffusivity correlated with either of two indices that reflect the linearity of the sorption isotherm. Bunker C oil present in one soil acted as a partition domain. The findings of this study are consistent with heterogeneous models of soil organic matter, and indicate that concentration effects should be taken into account whenever desorption rate is important.


Subject(s)
Models, Theoretical , Polycyclic Aromatic Hydrocarbons/chemistry , Soil Pollutants/analysis , Adsorption , Biological Availability , Diffusion , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...