Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Migr Health ; 9: 100218, 2024.
Article in English | MEDLINE | ID: mdl-38559897

ABSTRACT

Background: Migrants in the United Kingdom (UK) may be at higher risk of SARS-CoV-2 exposure; however, little is known about their risk of COVID-19-related hospitalisation during waves 1-3 of the pandemic. Methods: We analysed secondary care data linked to Virus Watch study data for adults and estimated COVID-19-related hospitalisation incidence rates by migration status. To estimate the total effect of migration status on COVID-19 hospitalisation rates, we ran mixed-effect Poisson regression for wave 1 (01/03/2020-31/08/2020; wildtype), and mixed-effect negative binomial regressions for waves 2 (01/09/2020-31/05/2021; Alpha) and 3 (01/06/2020-31/11/2021; Delta). Results of all models were then meta-analysed. Results: Of 30,276 adults in the analyses, 26,492 (87.5 %) were UK-born and 3,784 (12.5 %) were migrants. COVID-19-related hospitalisation incidence rates for UK-born and migrant individuals across waves 1-3 were 2.7 [95 % CI 2.2-3.2], and 4.6 [3.1-6.7] per 1,000 person-years, respectively. Pooled incidence rate ratios across waves suggested increased rate of COVID-19-related hospitalisation in migrants compared to UK-born individuals in unadjusted 1.68 [1.08-2.60] and adjusted analyses 1.35 [0.71-2.60]. Conclusion: Our findings suggest migration populations in the UK have excess risk of COVID-19-related hospitalisations and underscore the need for more equitable interventions particularly aimed at COVID-19 vaccination uptake among migrants.

2.
Int J Infect Dis ; 139: 28-33, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38008351

ABSTRACT

OBJECTIVES: The importance of SARS-CoV-2 transmission via the eyes is unknown, with previous studies mainly focusing on protective eyewear in healthcare settings. This study aimed to test the hypothesis that wearing eyeglasses is associated with a lower risk of COVID-19. METHODS: Participants from the Virus Watch prospective community cohort study responded to a questionnaire on the use of eyeglasses and contact lenses. Infection was confirmed through data linkage, self-reported positive results, and, for a subgroup, monthly capillary antibody testing. Multivariable logistic regression models, controlling for age, sex, income, and occupation, were used to identify the odds of infection depending on frequency and purpose of eyeglasses or contact lenses use. RESULTS: A total of 19,166 participants responded to the questionnaire, with 13,681 (71.3%, CI 70.7-72.0) reporting they wore eyeglasses. Multivariable logistic regression model showed a 15% lower odds of infection for those who reported using eyeglasses always for general use (odds ratio [OR] 0.85, 95% 0.77-0.95, P = 0.002) compared to those who never wore eyeglasses. The protective effect was reduced for those who said wearing eyeglasses interfered with mask-wearing and was absent for contact lens wearers. CONCLUSIONS: People who wear eyeglasses have a moderate reduction in risk of COVID-19 infection, highlighting that eye protection may make a valuable contribution to the reduction of transmission in community and healthcare settings.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Cohort Studies , Prospective Studies , Eyeglasses
4.
Sci Rep ; 13(1): 12511, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37532756

ABSTRACT

Respiratory viruses that were suppressed through previous lockdowns during the COVID-19 pandemic have recently started to co-circulate with SARS-CoV-2. Understanding the clinical characteristics and symptomatology of different respiratory viral infections can help address the challenges related to the identification of cases and the understanding of SARS-CoV-2 variants' evolutionary patterns. Flu Watch (2006-2011) and Virus Watch (2020-2022) are household community cohort studies monitoring the epidemiology of influenza, respiratory syncytial virus, rhinovirus, seasonal coronavirus, and SARS-CoV-2, in England and Wales. This study describes and compares the proportion of symptoms reported during illnesses infected by common respiratory viruses. The SARS-CoV-2 symptom profile increasingly resembles that of other respiratory viruses as new strains emerge. Increased cough, sore throat, runny nose, and sneezing are associated with the emergence of the Omicron strains. As SARS-CoV-2 becomes endemic, monitoring the evolution of its symptomatology associated with new variants will be critical for clinical surveillance.


Subject(s)
COVID-19 , Enterovirus Infections , Influenza, Human , Respiratory Syncytial Virus, Human , Humans , SARS-CoV-2/genetics , Rhinovirus/genetics , Influenza, Human/epidemiology , Pandemics , Seasons , COVID-19/epidemiology , Communicable Disease Control
5.
Int J Health Plann Manage ; 38(6): 1864-1876, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37549127

ABSTRACT

BACKGROUND: It is poorly understood which workers lack access to sick pay in England and Wales. This evidence gap has been of particular interest in the context of the Covid-19 pandemic given the relationship between presenteeism and infectious disease transmission. METHOD: This cross-sectional analysis (n = 8874) was nested within a large community cohort study based across England and Wales (Virus Watch). An online survey in February 2021 asked participants in work if they had access to paid sick leave. We used logistic regression to examine sociodemographic factors associated with lacking access to sick pay. RESULTS: Only 66% (n = 5864) of participants reported access to sick pay. South Asian workers (adjusted odds ratio [OR] 1.40, 95% confidence interval [CI] 1.06-1.83) and those from Other minority ethnic backgrounds (OR 2.93, 95% CI 1.54-5.59) were more likely to lack access to sick pay compared to White British workers. Older workers (OR range 1.72 [1.53-1.93]-5.26 [4.42-6.26]), workers in low-income households (OR 2.53, 95% CI 2.15-2.98) and those in transport, trade, and service occupations (OR range 2.03 [1.58-2.61]-5.29 [3.67-7.72]) were also more likely to lack access to sick pay compared respectively to workers aged 25-44, those in high income households and managerial occupations. DISCUSSION: Unwarranted age and ethnic inequalities in sick pay access are suggestive of labour market discrimination. Occupational differences are also cause for concern. Policymakers should consider expanding access to sick pay to mitigate transmission of Covid-19 and other endemic respiratory infections in the community, and in the context of pandemic preparation.


Subject(s)
COVID-19 , Sick Leave , Humans , Cross-Sectional Studies , Pandemics , Wales/epidemiology , Cohort Studies , England/epidemiology
6.
Epidemics ; 44: 100713, 2023 09.
Article in English | MEDLINE | ID: mdl-37579586

ABSTRACT

BACKGROUND: The serial interval is a key epidemiological measure that quantifies the time between the onset of symptoms in an infector-infectee pair. It indicates how quickly new generations of cases appear, thus informing on the speed of an epidemic. Estimating the serial interval requires to identify pairs of infectors and infectees. Yet, most studies fail to assess the direction of transmission between cases and assume that the order of infections - and thus transmissions - strictly follows the order of symptom onsets, thereby imposing serial intervals to be positive. Because of the long and highly variable incubation period of SARS-CoV-2, this may not always be true (i.e an infectee may show symptoms before their infector) and negative serial intervals may occur. This study aims to estimate the serial interval of different SARS-CoV-2 variants whilst accounting for negative serial intervals. METHODS: This analysis included 5 842 symptomatic individuals with confirmed SARS-CoV-2 infection amongst 2 579 households from September 2020 to August 2022 across England & Wales. We used a Bayesian framework to infer who infected whom by exploring all transmission trees compatible with the observed dates of symptoms, based on a wide range of incubation period and generation time distributions compatible with estimates reported in the literature. Serial intervals were derived from the reconstructed transmission pairs, stratified by variants. RESULTS: We estimated that 22% (95% credible interval (CrI) 8-32%) of serial interval values are negative across all VOC. The mean serial interval was shortest for Omicron BA5 (2.02 days, 1.26-2.84) and longest for Alpha (3.37 days, 2.52-4.04). CONCLUSIONS: This study highlights the large proportion of negative serial intervals across SARS-CoV-2 variants. Because the serial interval is widely used to estimate transmissibility and forecast cases, these results may have critical implications for epidemic control.


Subject(s)
COVID-19 , Epidemics , Humans , SARS-CoV-2 , COVID-19/epidemiology , Bayes Theorem
7.
J Epidemiol Community Health ; 77(10): 649-655, 2023 10.
Article in English | MEDLINE | ID: mdl-37463770

ABSTRACT

BACKGROUND: Migrants are over-represented in SARS-CoV-2 infections globally; however, evidence is limited for migrants in England and Wales. Household overcrowding is a risk factor for SARS-CoV-2 infection, with migrants more likely to live in overcrowded households than UK-born individuals. We aimed to estimate the total effect of migration status on SARS-CoV-2 infection and to what extent household overcrowding mediated this effect. METHODS: We included a subcohort of individuals from the Virus Watch prospective cohort study during the second SARS-CoV-2 wave (1 September 2020-30 April 2021) who were aged ≥18 years, self-reported the number of rooms in their household and had no evidence of SARS-CoV-2 infection pre-September 2020. We estimated total, indirect and direct effects using Buis' logistic decomposition regression controlling for age, sex, ethnicity, clinical vulnerability, occupation, income and whether they lived with children. RESULTS: In total, 23 478 individuals were included. 9.07% (187/2062) of migrants had evidence of infection during the study period vs 6.27% (1342/21 416) of UK-born individuals. Migrants had 22% higher odds of infection during the second wave (total effect; OR 1.22, 95% CI 1.01 to 1.47). Household overcrowding accounted for approximately 36% (95% CI -4% to 77%) of these increased odds (indirect effect, OR 1.07, 95% CI 1.03 to 1.12; proportion accounted for: indirect effect on log odds scale/total effect on log odds scale=0.36). CONCLUSION: Migrants had higher odds of SARS-CoV-2 infection during the second wave compared with UK-born individuals and household overcrowding explained 36% of these increased odds. Policy interventions to reduce household overcrowding for migrants are needed as part of efforts to tackle health inequalities during the pandemic and beyond.


Subject(s)
COVID-19 , Transients and Migrants , Adolescent , Adult , Humans , COVID-19/epidemiology , Mediation Analysis , Prospective Studies , SARS-CoV-2 , Male , Female , Family Characteristics
9.
Article in English | MEDLINE | ID: mdl-37047894

ABSTRACT

Mental health is influenced by multiple complex and interacting genetic, psychological, social, and environmental factors. As such, developing state-of-the-art mental health knowledge requires collaboration across academic disciplines, including environmental science. To assess the current contribution of environmental science to this field, a scoping review of the literature on environmental influences on mental health (including conditions of cognitive development and decline) was conducted. The review protocol was developed in consultation with experts working across mental health and environmental science. The scoping review included 202 English-language papers, published between 2010 and 2020 (prior to the COVID-19 pandemic), on environmental themes that had not already been the subject of recent systematic reviews; 26 reviews on climate change, flooding, air pollution, and urban green space were additionally considered. Studies largely focused on populations in the USA, China, or Europe and involved limited environmental science input. Environmental science research methods are primarily focused on quantitative approaches utilising secondary datasets or field data. Mental health measurement was dominated by the use of self-report psychometric scales. Measures of environmental states or exposures were often lacking in specificity (e.g., limited to the presence or absence of an environmental state). Based on the scoping review findings and our synthesis of the recent reviews, a research agenda for environmental science's future contribution to mental health scholarship is set out. This includes recommendations to expand the geographical scope and broaden the representation of different environmental science areas, improve measurement of environmental exposure, prioritise experimental and longitudinal research designs, and giving greater consideration to variation between and within communities and the mediating pathways by which environment influences mental health. There is also considerable opportunity to increase interdisciplinarity within the field via the integration of conceptual models, the inclusion of mixed methods and qualitative approaches, as well as further consideration of the socio-political context and the environmental states that can help support good mental health. The findings were used to propose a conceptual model to parse contributions and connections between environmental science and mental health to inform future studies.


Subject(s)
COVID-19 , Environmental Science , Humans , Mental Health , Pandemics , Environmental Exposure
10.
JMIR Public Health Surveill ; 9: e38072, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36884272

ABSTRACT

BACKGROUND: Evidence suggests that individuals may change adherence to public health policies aimed at reducing the contact, transmission, and spread of the SARS-CoV-2 virus after they receive their first SARS-CoV-2 vaccination when they are not fully vaccinated. OBJECTIVE: We aimed to estimate changes in median daily travel distance of our cohort from their registered addresses before and after receiving a SARS-CoV-2 vaccine. METHODS: Participants were recruited into Virus Watch starting in June 2020. Weekly surveys were sent out to participants, and vaccination status was collected from January 2021 onward. Between September 2020 and February 2021, we invited 13,120 adult Virus Watch participants to contribute toward our tracker subcohort, which uses the GPS via a smartphone app to collect data on movement. We used segmented linear regression to estimate the median daily travel distance before and after the first self-reported SARS-CoV-2 vaccine dose. RESULTS: We analyzed the daily travel distance of 249 vaccinated adults. From 157 days prior to vaccination until the day before vaccination, the median daily travel distance was 9.05 (IQR 8.06-10.09) km. From the day of vaccination to 105 days after vaccination, the median daily travel distance was 10.08 (IQR 8.60-12.42) km. From 157 days prior to vaccination until the vaccination date, there was a daily median decrease in mobility of 40.09 m (95% CI -50.08 to -31.10; P<.001). After vaccination, there was a median daily increase in movement of 60.60 m (95% CI 20.90-100; P<.001). Restricting the analysis to the third national lockdown (January 4, 2021, to April 5, 2021), we found a median daily movement increase of 18.30 m (95% CI -19.20 to 55.80; P=.57) in the 30 days prior to vaccination and a median daily movement increase of 9.36 m (95% CI 38.6-149.00; P=.69) in the 30 days after vaccination. CONCLUSIONS: Our study demonstrates the feasibility of collecting high-volume geolocation data as part of research projects and the utility of these data for understanding public health issues. Our various analyses produced results that ranged from no change in movement after vaccination (during the third national lock down) to an increase in movement after vaccination (considering all periods, up to 105 days after vaccination), suggesting that, among Virus Watch participants, any changes in movement distances after vaccination are small. Our findings may be attributable to public health measures in place at the time such as movement restrictions and home working that applied to the Virus Watch cohort participants during the study period.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Wales , SARS-CoV-2 , Cohort Studies , Geographic Information Systems , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , England , Vaccination , Self Report
12.
Int J Epidemiol ; 52(2): 342-354, 2023 04 19.
Article in English | MEDLINE | ID: mdl-36655537

ABSTRACT

BACKGROUND: The Omicron B.1.1.529 variant increased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in doubly vaccinated individuals, particularly in the Oxford-AstraZeneca COVID-19 vaccine (ChAdOx1) recipients. To tackle infections, the UK's booster vaccination programmes used messenger ribonucleic acid (mRNA) vaccines irrespective of an individual's primary course vaccine type, and prioritized the clinically vulnerable. These mRNA vaccines included the Pfizer-BioNTech COVID-19 vaccine (BNT162b2) the Moderna COVID-19 vaccine (mRNA-1273). There is limited understanding of the effectiveness of different primary vaccination courses on mRNA booster vaccines against SARs-COV-2 infections and how time-varying confounders affect these evaluations. METHODS: Trial emulation was applied to a prospective community observational cohort in England and Wales to reduce time-varying confounding-by-indication driven by prioritizing vaccination based upon age, vulnerability and exposure. Trial emulation was conducted by meta-analysing eight adult cohort results whose booster vaccinations were staggered between 16 September 2021 and 05 January 2022 and followed until 23 January 2022. Time from booster vaccination until SARS-CoV-2 infection, loss of follow-up or end of study was modelled using Cox proportional hazard models and adjusted for age, sex, minority ethnic status, clinically vulnerability and deprivation. RESULTS: A total of 19 159 participants were analysed, with 11 709 ChAdOx1 primary courses and 7450 BNT162b2 primary courses. Median age, clinical vulnerability status and infection rates fluctuate through time. In mRNA-boosted adults, 7.4% (n = 863) of boosted adults with a ChAdOx1 primary course experienced a SARS-CoV-2 infection compared with 7.7% (n = 571) of those who had BNT162b2 as a primary course. The pooled adjusted hazard ratio (aHR) was 1.01 with a 95% confidence interval (CI) of: 0.90 to 1.13. CONCLUSION: After an mRNA booster dose, we found no difference in protection comparing those with a primary course of BNT162b2 with those with a ChAdOx1 primary course. This contrasts with pre-booster findings where previous research shows greater effectiveness of BNT162b2 than ChAdOx1 in preventing infection.


Subject(s)
COVID-19 , Adult , Humans , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Vaccination
13.
Vaccine ; 40(52): 7646-7652, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36372668

ABSTRACT

BACKGROUND: Occupational disparities in COVID-19 vaccine uptake can impact the effectiveness of vaccination programmes and introduce particular risk for vulnerable workers and those with high workplace exposure. This study aimed to investigate COVID-19 vaccine uptake by occupation, including for vulnerable groups and by occupational exposure status. METHODS: We used data from employed or self-employed adults who provided occupational information as part of the Virus Watch prospective cohort study (n = 19,595) and linked this to study-obtained information about vulnerability-relevant characteristics (age, medical conditions, obesity status) and work-related COVID-19 exposure based on the Job Exposure Matrix. Participant vaccination status for the first, second, and third dose of any COVID-19 vaccine was obtained based on linkage to national records and study records. We calculated proportions and Sison-Glaz multinomial 95% confidence intervals for vaccine uptake by occupation overall, by vulnerability-relevant characteristics, and by job exposure. FINDINGS: Vaccination uptake across occupations ranged from 89-96% for the first dose, 87-94% for the second dose, and 75-86% for the third dose, with transport, trade, service and sales workers persistently demonstrating the lowest uptake. Vulnerable workers tended to demonstrate fewer between-occupational differences in uptake than non-vulnerable workers, although clinically vulnerable transport workers (76%-89% across doses) had lower uptake than several other occupational groups (maximum across doses 86%-96%). Workers with low SARS-CoV-2 exposure risk had higher vaccine uptake (86%-96% across doses) than those with elevated or high risk (81-94% across doses). INTERPRETATION: Differential vaccination uptake by occupation, particularly amongst vulnerable and highly-exposed workers, is likely to worsen occupational and related socioeconomic inequalities in infection outcomes. Further investigation into occupational and non-occupational factors influencing differential uptake is required to inform relevant interventions for future COVID-19 booster rollouts and similar vaccination programmes.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Prospective Studies , SARS-CoV-2 , Vaccination
14.
Nat Commun ; 13(1): 5780, 2022 10 02.
Article in English | MEDLINE | ID: mdl-36184633

ABSTRACT

Vaccination constitutes the best long-term solution against Coronavirus Disease-2019; however, vaccine-derived immunity may not protect all groups equally, and the durability of protective antibodies may be short. We evaluate Spike-antibody responses following BNT162b2 or ChAdOx1-S vaccination amongst SARS-CoV2-naive adults across England and Wales enrolled in a prospective cohort study (Virus Watch). Here we show BNT162b2 recipients achieved higher peak antibody levels after two doses; however, both groups experience substantial antibody waning over time. In 8356 individuals submitting a sample ≥28 days after Dose 2, we observe significantly reduced Spike-antibody levels following two doses amongst individuals reporting conditions and therapies that cause immunosuppression. After adjusting for these, several common chronic conditions also appear to attenuate the antibody response. These findings suggest the need to continue prioritising vulnerable groups, who have been vaccinated earliest and have the most attenuated antibody responses, for future boosters.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Antibodies, Viral , Antibody Formation , BNT162 Vaccine , COVID-19/prevention & control , Cohort Studies , Demography , Humans , Prospective Studies , RNA, Viral , SARS-CoV-2 , Vaccination
15.
Int J Infect Dis ; 123: 104-111, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35987470

ABSTRACT

OBJECTIVES: Seroprevalence studies can provide a measure of SARS-CoV-2 cumulative incidence, but a better understanding of spike and nucleocapsid (anti-N) antibody dynamics following infection is needed to assess the longevity of detectability. METHODS: Adults aged ≥18 years, from households enrolled in the Virus Watch prospective community cohort study in England and Wales, provided monthly capillary blood samples, which were tested for spike antibody and anti-N. Participants self-reported vaccination dates and past medical history. Previous polymerase chain reaction (PCR) swabs were obtained through Second Generation Surveillance System linkage data. The primary outcome variables were seropositivity and total anti-N and spike antibody levels after PCR-confirmed infection. RESULTS: A total of 13,802 eligible individuals provided 58,770 capillary blood samples. A total of 537 of these had a previous positive PCR-confirmed SARS-CoV-2 infection within 0-269 days of antibody sample date, among them 432 (80.45%) having a positive anti-N result. Median anti-N levels peaked between days 90 and 119 after PCR results and then began to decline. There is evidence of anti-N waning from 120 days onwards, with earlier waning for females and younger age categories. CONCLUSION: Our findings suggest that anti-N has around 80% sensitivity for identifying previous COVID-19 infection, and the duration of detectability is affected by sex and age.


Subject(s)
COVID-19 , Adolescent , Adult , Antibodies, Viral , Antibody Formation , COVID-19/diagnosis , COVID-19/epidemiology , Cohort Studies , Female , Humans , Nucleocapsid , Prospective Studies , SARS-CoV-2 , Seroepidemiologic Studies
16.
Nat Commun ; 13(1): 4869, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35982056

ABSTRACT

A range of studies globally demonstrate that the effectiveness of SARS-CoV-2 vaccines wane over time, but the total effect of anti-S antibody levels on risk of SARS-CoV-2 infection and whether this varies by vaccine type is not well understood. Here we show that anti-S levels peak three to four weeks following the second dose of vaccine and the geometric mean of the samples is nine fold higher for BNT162b2 than ChAdOx1. Increasing anti-S levels are associated with a reduced risk of SARS-CoV-2 infection (Hazard Ratio 0.85; 95%CIs: 0.79-0.92). We do not find evidence that this antibody relationship with risk of infection varies by second dose vaccine type (BNT162b2 vs. ChAdOx1). In keeping with our anti-S antibody data, we find that people vaccinated with ChAdOx1 had 1.64 times the odds (95% confidence interval 1.45-1.85) of a breakthrough infection compared to BNT162b2. We anticipate our findings to be useful in the estimation of the protective effect of anti-S levels on risk of infection due to Delta. Our findings provide evidence about the relationship between antibody levels and protection for different vaccines and will support decisions on optimising the timing of booster vaccinations and identifying individuals who should be prioritised for booster vaccination, including those who are older, clinically extremely vulnerable, or received ChAdOx1 as their primary course. Our finding that risk of infection by anti-S level does not interact with vaccine type, but that individuals vaccinated with ChAdOx1 were at higher risk of infection, provides additional support for the use of using anti-S levels for estimating vaccine efficacy.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2
17.
Occup Environ Med ; 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35450951

ABSTRACT

OBJECTIVES: Risk of SARS-CoV-2 infection varies across occupations; however, investigation into factors underlying differential risk is limited. We aimed to estimate the total effect of occupation on SARS-CoV-2 serological status, whether this is mediated by workplace close contact, and how exposure to poorly ventilated workplaces varied across occupations. METHODS: We used data from a subcohort (n=3775) of adults in the UK-based Virus Watch cohort study who were tested for SARS-CoV-2 anti-nucleocapsid antibodies (indicating natural infection). We used logistic decomposition to investigate the relationship between occupation, contact and seropositivity, and logistic regression to investigate exposure to poorly ventilated workplaces. RESULTS: Seropositivity was 17.1% among workers with daily close contact vs 10.0% for those with no work-related close contact. Compared with other professional occupations, healthcare, indoor trade/process/plant, leisure/personal service, and transport/mobile machine workers had elevated adjusted total odds of seropositivity (1.80 (1.03 to 3.14) - 2.46 (1.82 to 3.33)). Work-related contact accounted for a variable part of increased odds across occupations (1.04 (1.01 to 1.08) - 1.23 (1.09 to 1.40)). Occupations with raised odds of infection after accounting for work-related contact also had greater exposure to poorly ventilated workplaces. CONCLUSIONS: Work-related close contact appears to contribute to occupational variation in seropositivity. Reducing contact in workplaces is an important COVID-19 control measure.

18.
Lancet ; 400 Suppl 1: S40, 2022 11.
Article in English | MEDLINE | ID: mdl-36929985

ABSTRACT

BACKGROUND: The serial interval is a key epidemiological measure that quantifies the time between an infector's and an infectee's onset of symptoms. This measure helps investigate epidemiological links between cases, and is an important parameter in transmission models used to estimate transmissibility and inform control strategies. The emergence of multiple variants of concern (VOC) during the SARS-CoV-2 pandemic has led to uncertainties about potential changes in the serial interval of COVID-19. We estimated the household serial interval of multiple VOC using data collected by the Virus Watch study. This online, prospective, community cohort study followed-up entire households in England and Wales since mid-June 2020. METHODS: This analysis included 5842 symptomatic individuals with confirmed SARS-CoV-2 infection among 2579 households from Sept 1, 2020, to Aug 10, 2022. SARS-CoV-2 variant designation was based upon national surveillance data of variant prevalence by date and geographical region. We used a Bayesian framework to infer who infected whom by exploring all transmission trees compatible with the observed dates of symptoms, given assumptions on the incubation period and generation time distributions using the R package outbreaker2. FINDINGS: We characterised the serial interval of COVID-19 by VOC. The mean serial interval was shortest for omicron BA5 (2·02 days; 95% credible interval [CrI] 1·26-2·84) and longest for alpha (3·37 days; 2·52-4·04). The mean serial interval before alpha (wild-type) was 2·29 days (95% CrI 1·39-2·94), 3·11 days (2·28-3·90) for delta, 2·72 days (2·01-3·47) for omicron BA1, and 2·67 days (1·90-3·46) for omicron BA2. We estimated that 17% (95% CrI 5-26) of serial interval values are negative across all variants. INTERPRETATION: Most methods estimating the reproduction number from incidence time series do not allow for a negative serial interval by construction. Further research is needed to extend these methods and assess biases introduced by not accounting for negative serial intervals. To our knowledge, this study is the first to use a Bayesian framework to estimate the serial interval of all major SARS-CoV-2 VOC from thousands of confirmed household cases. FUNDING: UK Medical Research Council and Wellcome Trust.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Bayes Theorem , Cohort Studies , Prospective Studies
19.
J Epidemiol Community Health ; 76(4): 319-326, 2022 04.
Article in English | MEDLINE | ID: mdl-34642240

ABSTRACT

BACKGROUND: Differential exposure to public activities may contribute to stark deprivation-related inequalities in SARS-CoV-2 infection and outcomes but has not been directly investigated. We set out to investigate whether participants in Virus Watch-a large community cohort study based in England and Wales-reported differential exposure to public activities and non-household contacts during the autumn-winter phase of the COVID-19 pandemic according to postcode-level socioeconomic deprivation. METHODS: Participants (n=20 120-25 228 across surveys) reported their daily activities during 3 weekly periods in late November 2020, late December 2020 and mid-February 2021. Deprivation was quantified based on participants' residential postcode using English or Welsh Index of Multiple Deprivation quintiles. We used Poisson mixed-effect models with robust standard errors to estimate the relationship between deprivation and risk of exposure to public activities during each survey period. RESULTS: Relative to participants in the least deprived areas, participants in the most deprived areas exhibited elevated risk of exposure to vehicle sharing (adjusted risk ratio (aRR) range across time points: 1.73-8.52), public transport (aRR: 3.13-5.73), work or education outside of the household (aRR: 1.09-1.21), essential shops (aRR: 1.09-1.13) and non-household contacts (aRR: 1.15-1.19) across multiple survey periods. CONCLUSION: Differential exposure to essential public activities-such as attending workplaces and visiting essential shops-is likely to contribute to inequalities in infection risk and outcomes. Public health interventions to reduce exposure during essential activities and financial and practical support to enable low-paid workers to stay at home during periods of intense transmission may reduce COVID-related inequalities.


Subject(s)
COVID-19 , COVID-19/epidemiology , Cohort Studies , England/epidemiology , Health Status Disparities , Humans , Pandemics , SARS-CoV-2 , Wales/epidemiology
20.
Wellcome Open Res ; 7: 84, 2022.
Article in English | MEDLINE | ID: mdl-37745779

ABSTRACT

Background: Understanding symptomatology and accuracy of clinical case definitions for community COVID-19 cases is important for Test, Trace and Isolate (TTI) and future targeting of early antiviral treatment.   Methods: Community cohort participants prospectively recorded daily symptoms and swab results (mainly undertaken through the UK TTI system).  We compared symptom frequency, severity, timing, and duration in test positive and negative illnesses.  We compared the test performance of the current UK TTI case definition (cough, high temperature, or loss of or altered sense of smell or taste) with a wider definition adding muscle aches, chills, headache, or loss of appetite.     Results: Among 9706 swabbed illnesses, including 973 SARS-CoV-2 positives, symptoms were more common, severe and longer lasting in swab positive than negative illnesses.  Cough, headache, fatigue, and muscle aches were the most common symptoms in positive illnesses but also common in negative illnesses. Conversely, high temperature, loss or altered sense of smell or taste and loss of appetite were less frequent in positive illnesses, but comparatively even less frequent in negative illnesses.  The current UK definition had 81% sensitivity and 47% specificity versus 93% and 27% respectively for the broader definition. 1.7-fold more illnesses met the broader case definition than the current definition.  Conclusions: Symptoms alone cannot reliably distinguish COVID-19 from other respiratory illnesses. Adding additional symptoms to case definitions could identify more infections, but with a large increase in the number needing testing and the number of unwell individuals and contacts self-isolating whilst awaiting results.

SELECTION OF CITATIONS
SEARCH DETAIL
...