Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 7: 1345, 2016.
Article in English | MEDLINE | ID: mdl-27617011

ABSTRACT

Campylobacter jejuni is one of the leading foodborne pathogens worldwide. C. jejuni is isolated from a wide range of foods, domestic animals, wildlife, and environmental sources. The currently available culture-based isolation methods are not highly effective for wastewater samples due to the low number of C. jejuni in the midst of competing bacteria. To detect and isolate C. jejuni from wastewater samples, in this study, we evaluated a few different enrichment conditions using five different antibiotics (i.e., cefoperazone, vancomycin, trimethoprim, polymyxin B, and rifampicin), to which C. jejuni is intrinsically resistant. The selectivity of each enrichment condition was measured with C t value using quantitative real-time PCR, and multiplex PCR to determine Campylobacter species. In addition, the efficacy of Campylobacter isolation on different culture media after selective enrichment was examined by growing on Bolton and Preston agar plates. The addition of polymyxin B, rifampicin, or both to the Bolton selective supplements enhanced the selective isolation of C. jejuni. The results of 16S rDNA sequencing also revealed that Enterococcus spp. and Pseudomonas aeruginosa are major competing bacteria in the enrichment conditions. Although it is known to be difficult to isolate Campylobacter from samples with heavy contamination, this study well exhibited that the manipulation of antibiotic selective pressure improves the isolation efficiency of fastidious Campylobacter from wastewater.

2.
Appl Environ Microbiol ; 82(18): 5505-18, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27371583

ABSTRACT

UNLABELLED: Escherichia coli has been proposed to have two habitats-the intestines of mammals/birds and the nonhost environment. Our goal was to assess whether certain strains of E. coli have evolved toward adaptation and survival in wastewater. Raw sewage samples from different treatment plants were subjected to chlorine stress, and ∼59% of the surviving E. coli strains were found to contain a genetic insertion element (IS30) located within the uspC-flhDC intergenic region. The positional location of the IS30 element was not observed across a library of 845 E. coli isolates collected from various animal hosts or within GenBank or whole-genome reference databases for human and animal E. coli isolates (n = 1,177). Phylogenetics clustered the IS30 element-containing wastewater E. coli isolates into a distinct clade, and biomarker analysis revealed that these wastewater isolates contained a single nucleotide polymorphism (SNP) biomarker pattern that was specific for wastewater. These isolates belonged to phylogroup A, possessed generalized stress response (RpoS) activity, and carried the locus of heat resistance, features likely relevant to nonhost environmental survival. Isolates were screened for 28 virulence genes but carried only the fimH marker. Our data suggest that wastewater contains a naturalized resident population of E. coli We developed an endpoint PCR targeting the IS30 element within the uspC-flhDC intergenic region, and all raw sewage samples (n = 21) were positive for this marker. Conversely, the prevalence of this marker in E. coli-positive surface and groundwater samples was low (≤5%). This simple PCR assay may represent a convenient microbial source-tracking tool for identification of water samples affected by municipal wastewater. IMPORTANCE: The results of this study demonstrate that some strains of E. coli appear to have evolved to become naturalized populations in the wastewater environment and possess a number of stress-related genetic elements likely important for survival in this nonhost environment. The presence of non-host-adapted strains in wastewater challenges our understanding of using E. coli as a microbial indicator of wastewater treatment performance, suggesting that the E. coli strains present in human and animal feces may be very different from those found in treated wastewater.


Subject(s)
Adaptation, Biological , Escherichia coli/classification , Escherichia coli/physiology , Genotype , Stress, Physiological , Wastewater/microbiology , Bacterial Typing Techniques , Chlorine/metabolism , Cluster Analysis , DNA Transposable Elements , Disinfectants/metabolism , Escherichia coli/drug effects , Escherichia coli/genetics , Microbial Viability/drug effects , Phylogeny , Polymorphism, Single Nucleotide , Water Purification
3.
Appl Environ Microbiol ; 82(15): 4743-4756, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27235434

ABSTRACT

UNLABELLED: Campylobacter spp. are the leading cause of bacterial gastroenteritis worldwide, and water is increasingly seen as a risk factor in transmission. Here we describe a most-probable-number (MPN)-quantitative PCR (qPCR) assay in which water samples are centrifuged and aliquoted into microtiter plates and the bacteria are enumerated by qPCR. We observed that commonly used Campylobacter molecular assays produced vastly different detection rates. In irrigation water samples, detection rates varied depending upon the PCR assay and culture method used, as follows: 0% by the de Boer Lv1-16S qPCR assay, 2.5% by the Van Dyke 16S and Jensen glyA qPCR assays, and 75% by the Linton 16S endpoint PCR when cultured at 37°C. Primer/probe specificity was the major confounder, with Arcobacter spp. routinely yielding false-positive results. The primers and PCR conditions described by Van Dyke et al. (M. I. Van Dyke, V. K. Morton, N. L. McLellan, and P. M. Huck, J Appl Microbiol 109:1053-1066, 2010, http://dx.doi.org/10.1111/j.1365-2672.2010.04730.x) proved to be the most sensitive and specific for Campylobacter detection in water. Campylobacter occurrence in irrigation water was found to be very low (<2 MPN/300 ml) when this Campylobacter-specific qPCR was used, with the most commonly detected species being C. jejuni, C. coli, and C. lari Campylobacters in raw sewage were present at ∼10(2)/100 ml, with incubation at 42°C required for reducing microbial growth competition from arcobacters. Overall, when Campylobacter prevalence and/or concentration in water is reported using molecular methods, considerable validation is recommended when adapting methods largely developed for clinical applications. Furthermore, combining MPN methods with molecular biology-based detection algorithms allows for the detection and quantification of Campylobacter spp. in environmental samples and is potentially suited to quantitative microbial risk assessment for improved public health disease prevention related to food and water exposures. IMPORTANCE: The results of this study demonstrate the importance of assay validation upon data interpretation of environmental monitoring for Campylobacter when using molecular biology-based assays. Previous studies describing Campylobacter prevalence in Canada utilized primers that we have determined to be nonspecific due to their cross-amplification of Arcobacter spp. As such, Campylobacter prevalence may have been vastly overestimated in other studies. Additionally, the development of a quantitative assay described in this study will allow accurate determination of Campylobacter concentrations in environmental water samples, allowing more informed decisions to be made about water usage based on quantitative microbial risk assessment.


Subject(s)
Campylobacter/growth & development , Campylobacter/isolation & purification , Fresh Water/microbiology , Real-Time Polymerase Chain Reaction/methods , Wastewater/microbiology , Agricultural Irrigation , Campylobacter/classification , Campylobacter/genetics , Real-Time Polymerase Chain Reaction/instrumentation , Species Specificity
4.
J Microbiol Methods ; 118: 1-6, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26272376

ABSTRACT

The exceptional physio-chemical resistance of prions to established decontamination procedures poses a challenge to assessing the suitability of applied inactivation methods. Prion detection is limited by the sensitivity level of Western blotting or by the cost and time factors of bioassays. In addition, prion detection assays can be limited by either the unique or complex nature of matrices associated with environmental samples. To investigate anaerobic digestion (AD) as a practical and economical approach for potential conversion of specified risk materials (SRM) into value added products (i.e., renewable energy), challenges associated with detection of prions in a complex matrix need to be overcome to determine potential inactivation. Protein misfolding cyclic amplification (PMCA) assay, with subsequent Western blot visualization, was used to detect prions within the AD matrix. Anaerobic digestate initially inhibited the PMCA reaction and/or Western blot detection. However, at concentrations of ≤1% of anaerobic digestate, 263K scrapie prions could be amplified and semi-quantitatively detected. Infectious 263K prions were also proven to be bioavailable in the presence of high concentrations of digestate (10-90%). Development of the PMCA application to digestate provides extremely valuable insight into the potential degradation and/or fate of prions in complex biological matrices without requiring expensive and time-consuming bioassays.


Subject(s)
Blotting, Western , Chemistry Techniques, Analytical , Prions/analysis , Protein Folding , Anaerobiosis , Animals , Brain Chemistry , Cricetinae
5.
Environ Sci Technol ; 48(12): 6909-18, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24819143

ABSTRACT

Composting may serve as a practical and economical means of disposing of specified risk materials (SRM) or animal mortalities potentially infected with prion diseases (transmissible spongiform encephalopathies, TSE). Our study investigated the degradation of prions associated with scrapie (PrP(263K)), chronic waste disease (PrP(CWD)), and bovine spongiform encephalopathy (PrP(BSE)) in lab-scale composters and PrP(263K) in field-scale compost piles. Western blotting (WB) indicated that PrP(263K), PrP(CWD), and PrP(BSE) were reduced by at least 2 log10, 1-2 log10, and 1 log10 after 28 days of lab-scale composting, respectively. Further analysis using protein misfolding cyclic amplification (PMCA) confirmed a reduction of 2 log10 in PrP(263K) and 3 log10 in PrP(CWD). Enrichment for proteolytic microorganisms through the addition of feather keratin to compost enhanced degradation of PrP(263K) and PrP(CWD). For field-scale composting, stainless steel beads coated with PrP(263K) were exposed to compost conditions and removed periodically for bioassays in Syrian hamsters. After 230 days of composting, only one in five hamsters succumbed to TSE disease, suggesting at least a 4.8 log10 reduction in PrP(263K) infectivity. Our findings show that composting reduces PrP(TSE), resulting in one 50% infectious dose (ID50) remaining in every 5600 kg of final compost for land application. With these considerations, composting may be a viable method for SRM disposal.


Subject(s)
Prions/metabolism , Soil/chemistry , Animals , Biodegradation, Environmental , Biological Assay , Blotting, Western , Cattle , Cricetinae , Female , Mesocricetus , Mutant Proteins/metabolism , Protein Folding
6.
Sci Total Environ ; 470-471: 717-25, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24184548

ABSTRACT

Disposal of tissues and organs associated with prion accumulation and infectivity in infected animals (designated as Specified Risk Materials [SRM]) is strictly regulated by the Canadian Food Inspection Agency (CFIA); however, the contamination of wastewater from slaughterhouses that handle SRM still poses public concern. In this study, we examined for the first time the partitioning of infectious prions in rendering plant wastewater and found that a large proportion of infectious prions were partitioned into the scum layer formed at the top after gravity separation, while quite a few infectious prions still remained in the wastewater. Subsequently, we assessed the ozone inactivation of infectious prions in the raw, natural gravity-separated and dissolved air flotation (DAF)-treated (i.e., primary-treated) rendering plant wastewater, and in a municipal final effluent (i.e., secondary-treated municipal wastewater). At applied ozone doses of 43.4-44.6 mg/L, ozone was instantaneously depleted in the raw rendering plant wastewater, while a greater than 4-log10 inactivation was achieved at a 5 min exposure in the DAF-treated rendering plant wastewater. Prion inactivation in the municipal final effluent was conducted with two levels of applied ozone doses of 13.4 and 22.5mg/L, and a greater than 4-log10 inactivation was achieved at a 5 min exposure with the higher ozone dose. Efficiency factor Hom (EFH) models were used to model (i.e., fit) the experimental data. The CT (disinfectant concentration multiplied by contact time) values were determined for 2- and 3-log10 inactivation in the municipal final effluent treated with an ozone dose of 13.4 mg/L. Our results indicate that ozone could serve as a final barrier for prion inactivation in primary- and/or secondary-treated wastewaters.


Subject(s)
Abattoirs , Ozone/chemistry , Prions/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants/chemistry , Prions/analysis , Water Pollutants/analysis
7.
Water Res ; 47(9): 3026-36, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23548566

ABSTRACT

BACKGROUND: Surface and ground water across the world, including North America, is contaminated with bacteria resistant to antibiotics. The consumption of water contaminated with antimicrobial resistant Escherichia coli (E. coli) has been associated with the carriage of resistant E. coli in people who drink it. OBJECTIVES: To describe the proportion of drinking water samples submitted from private sources for bacteriological testing that were contaminated with E. coli resistant to antibiotics and to determine risk factors for the contamination of these water sources with resistant and multi-class resistant E. coli. METHODS: Water samples submitted for bacteriological testing in Ontario and Alberta Canada were tested for E. coli contamination, with a portion of the positive isolates tested for antimicrobial resistance. Households were invited to complete questionnaires to determine putative risk factors for well contamination. RESULTS: Using multinomial logistic regression, the risk of contamination with E. coli resistant to one or two classes of antibiotics compared to susceptible E. coli was higher for shore wells than drilled wells (odds ratio [OR] 2.8) and higher for farms housing chickens or turkeys (OR 3.0) than properties without poultry. The risk of contamination with multi-class resistant E. coli (3 or more classes) was higher if the properties housed swine (OR 5.5) or cattle (OR 2.2) than properties without these livestock and higher if the wells were located in gravel (OR 2.4) or clay (OR 2.1) than in loam. CONCLUSIONS: Housing livestock on the property, using a shore well, and having a well located in gravel or clay soil increases the risk of having antimicrobial resistant E. coli in E. coli contaminated wells. To reduce the incidence of water borne disease and the transmission of antimicrobial resistant bacteria, owners of private wells need to take measures to prevent contamination of their drinking water, routinely test their wells for contamination, and use treatments that eliminate bacteria.


Subject(s)
Anti-Infective Agents/pharmacology , Drinking Water/microbiology , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Water Microbiology , Water Pollution/analysis , Water Supply , Canada , Drug Resistance, Microbial/drug effects , Logistic Models , Risk Factors
8.
Appl Environ Microbiol ; 79(8): 2721-30, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23416994

ABSTRACT

The kinetics of ozone inactivation of infectious prion protein (PrP(Sc), scrapie 263K) was investigated in ozone-demand-free phosphate-buffered saline (PBS). Diluted infectious brain homogenates (IBH) (0.01%) were exposed to a predetermined ozone dose (10.8 ± 2.0 mg/liter) at three pHs (pH 4.4, 6.0, and 8.0) and two temperatures (4°C and 20°C). The inactivation of PrP(Sc) was quantified by determining the in vitro destruction of PrP(Sc) templating properties using the protein misfolding cyclic amplification (PMCA) assay and bioassay, which were shown to correlate well. The inactivation kinetics were characterized by both Chick-Watson (CW) and efficiency factor Hom (EFH) models. It was found that the EFH model fit the experimental data more appropriately. The efficacy of ozone inactivation of PrP(Sc) was both pH and temperature dependent. Based on the EFH model, CT (disinfectant concentration multiplied by contact time) values were determined for 2-log10, 3-log10, and 4-log10 inactivation at the conditions under which they were achieved. Our results indicated that ozone is effective for prion inactivation in ozone-demand-free water and may be applied for the inactivation of infectious prion in prion-contaminated water and wastewater.


Subject(s)
Oxidants, Photochemical/pharmacology , Ozone/pharmacology , PrPSc Proteins/drug effects , Animals , Brain/pathology , Cricetinae , Disinfectants , Hydrogen-Ion Concentration , PrPSc Proteins/chemistry , Protein Folding , Scrapie/metabolism
9.
Appl Environ Microbiol ; 78(3): 613-20, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22138993

ABSTRACT

Misfolded prions (PrP(Sc)) are well known for their resistance to conventional decontamination processes. The potential risk of contamination of the water environment, as a result of disposal of specified risk materials (SRM), has raised public concerns. Ozone is commonly utilized in the water industry for inactivation of microbial contaminants and was tested in this study for its ability to inactivate prions (263K hamster scrapie = PrP(Sc)). Treatment variables included initial ozone dose (7.6 to 25.7 mg/liter), contact time (5 s and 5 min), temperature (4°C and 20°C), and pH (pH 4.4, 6.0, and 8.0). Exposure of dilute suspensions of the infected 263K hamster brain homogenates (IBH) (0.01%) to ozone resulted in the in vitro destruction of the templating properties of PrP(Sc), as measured by the protein misfolding cyclic amplification (PMCA) assay. The highest levels of prion inactivation (≥4 log(10)) were observed with ozone doses of 13.0 mg/liter, at pH 4.4 and 20°C, resulting in a CT (the product of residual ozone concentration and contact time) value as low as 0.59 mg · liter(-1) min. A comparison of ozone CT requirements among various pathogens suggests that prions are more susceptible to ozone degradation than some model bacteria and protozoa and that ozone treatment may be an effective solution for inactivating prions in water and wastewater.


Subject(s)
Disinfectants/metabolism , Ozone/metabolism , PrPSc Proteins/metabolism , Protein Folding/drug effects , Animals , Brain/drug effects , Cricetinae , Disinfection/methods , Dose-Response Relationship, Drug , Hydrogen-Ion Concentration , Temperature , Time Factors
10.
Appl Environ Microbiol ; 73(12): 3945-57, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17483276

ABSTRACT

Recent molecular evidence suggests that different species and/or genotypes of Cryptosporidium display strong host specificity, altering our perceptions regarding the zoonotic potential of this parasite. Molecular forensic profiling of the small-subunit rRNA gene from oocysts enumerated on microscope slides by U.S. Environmental Protection Agency method 1623 was used to identify the range and prevalence of Cryptosporidium species and genotypes in the South Nation watershed in Ontario, Canada. Fourteen sites within the watershed were monitored weekly for 10 weeks to assess the occurrence, molecular composition, and host sources of Cryptosporidium parasites impacting water within the region. Cryptosporidium andersoni, Cryptosporidium muskrat genotype II, Cryptosporidium cervine genotype, C. baileyi, C. parvum, Cryptosporidium muskrat genotype I, the Cryptosporidium fox genotype, genotype W1, and genotype W12 were detected in the watershed. The molecular composition of the Cryptosporidium parasites, supported by general land use analysis, indicated that mature cattle were likely the main source of contamination of the watershed. Deer, muskrats, voles, birds, and other wildlife species, in addition to sewage (human or agricultural) may also potentially impact water quality within the study area. Source water protection studies that use land use analysis with molecular genotyping of Cryptosporidium parasites may provide a more robust source-tracking tool to characterize fecal impacts in a watershed. Moreover, the information is vital for assessing environmental and human health risks posed by water contaminated with zoonotic and/or anthroponotic forms of Cryptosporidium.


Subject(s)
Cryptosporidium/genetics , Genetic Variation , Phylogeny , Rivers/parasitology , Animals , Base Sequence , Cluster Analysis , Feces/parasitology , Genotype , Molecular Sequence Data , Ontario , RNA, Ribosomal/genetics , Ribotyping , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...