Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 6: 31, 2013 Feb 04.
Article in English | MEDLINE | ID: mdl-23379291

ABSTRACT

BACKGROUND: Millions of people and domestic animals around the world are affected by leishmaniasis, a disease caused by various species of flagellated protozoans in the genus Leishmania that are transmitted by several sand fly species. Insecticides are widely used for sand fly population control to try to reduce or interrupt Leishmania transmission. Zoonotic cutaneous leishmaniasis caused by L. major is vectored mainly by Phlebotomus papatasi (Scopoli) in Asia and Africa. Organophosphates comprise a class of insecticides used for sand fly control, which act through the inhibition of acetylcholinesterase (AChE) in the central nervous system. Point mutations producing an altered, insensitive AChE are a major mechanism of organophosphate resistance in insects and preliminary evidence for organophosphate-insensitive AChE has been reported in sand flies. This report describes the identification of complementary DNA for an AChE in P. papatasi and the biochemical characterization of recombinant P. papatasi AChE. METHODS: A P. papatasi Israeli strain laboratory colony was utilized to prepare total RNA utilized as template for RT-PCR amplification and sequencing of cDNA encoding acetylcholinesterase 1 using gene specific primers and 3'-5'-RACE. The cDNA was cloned into pBlueBac4.5/V5-His TOPO, and expressed by baculovirus in Sf21 insect cells in serum-free medium. Recombinant P. papatasi acetylcholinesterase was biochemically characterized using a modified Ellman's assay in microplates. RESULTS: A 2309 nucleotide sequence of PpAChE1 cDNA [GenBank: JQ922267] of P. papatasi from a laboratory colony susceptible to insecticides is reported with 73-83% nucleotide identity to acetylcholinesterase mRNA sequences of Culex tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a 710-amino acid protein [GenBank: AFP20868] exhibiting 85% amino acid identity with acetylcholinesterases of Cx. pipiens, Aedes aegypti, and 92% amino acid identity for L. longipalpis. Recombinant P. papatasi AChE1 was expressed in the baculovirus system and characterized as an insect acetylcholinesterase with substrate preference for acetylthiocholine and inhibition at high substrate concentration. Enzyme activity was strongly inhibited by eserine, BW284c51, malaoxon, and paraoxon, and was insensitive to the butyrylcholinesterase inhibitors ethopropazine and iso-OMPA. CONCLUSIONS: Results presented here enable the screening and identification of PpAChE mutations resulting in the genotype for insensitive PpAChE. Use of the recombinant P. papatasi AChE1 will facilitate rapid in vitro screening to identify novel PpAChE inhibitors, and comparative studies on biochemical kinetics of inhibition.


Subject(s)
Acetylcholinesterase/genetics , Insect Vectors/enzymology , Leishmaniasis/transmission , Phlebotomus/enzymology , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Amino Acid Sequence , Animals , Baculoviridae/genetics , Base Sequence , Cholinesterase Inhibitors/pharmacology , DNA, Complementary/chemistry , DNA, Complementary/genetics , Female , Humans , Insect Vectors/genetics , Insecticide Resistance , Insecticides/pharmacology , Kinetics , Leishmaniasis/parasitology , Male , Molecular Sequence Data , Organophosphates/pharmacology , Phlebotomus/genetics , Point Mutation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Analysis, DNA , Texas
2.
Chem Biol Interact ; 203(1): 319-22, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23036311

ABSTRACT

Acetylcholinesterase (AChE) is the biochemical target of organophosphate (OP) and carbamate pesticides for invertebrates, vertebrate nerve agents, and AChE inhibitors used to reduce effects of Alzheimer's disease. Organophosphate pesticides (OPs) are widely used to control blood-feeding arthropods, including biting flies and ticks. However, resistance to OPs in pests affecting animal and human health has compromised control efficacy. OP resistance often results from mutations producing an OP-insensitive AChE. Our studies have demonstrated production of OP-insensitive AChEs in biting flies and ticks. Complementary DNA (cDNA) sequences encoding AChEs were obtained for the horn fly, stable fly, sand fly, and the southern cattle tick. The availability of cDNA sequences enables the identification of mutations, expression and characterization of recombinant proteins, gene silencing for functional studies, as well as in vitro screening of novel inhibitors. The southern cattle tick expresses at least three different genes encoding AChE in their synganglion, i.e. brain. Gene amplification for each of the three known cattle tick AChE genes and expression of multiple alleles for each gene may reduce fitness cost associated with OP-resistance. AChE hydrolyzes the neurotransmitter, acetylcholine, but may have additional roles in physiology and development. The three cattle tick AChEs possess significantly different biochemical properties, and are expressed in neural and non-neural tissues, which suggest separation of structure and function. The remarkable complexity of AChEs in ticks suggested by combining genomic data from Ixodes scapularis with our genetic and biochemical data from Rhipicephalus microplus is suggestive of previously unknown gene duplication and diversification. Comparative studies between invertebrate and vertebrate AChEs could enhance our understanding of structure-activity relationships. Research with ticks as a model system offers the opportunity to elucidate structure-activity relationships for AChE that are important for advances in targeted pest control, as well as potential applications for medicine and biosecurity.


Subject(s)
Acetylcholinesterase/metabolism , Diptera/enzymology , Ticks/enzymology , Acaricides/pharmacology , Acetylcholinesterase/genetics , Animals , Cattle , Cholinesterase Inhibitors/pharmacology , Diptera/drug effects , Diptera/genetics , Drug Resistance , Humans , Insect Proteins/genetics , Insect Proteins/metabolism , Insecticide Resistance , Insecticides/pharmacology , Organophosphorus Compounds/pharmacology , Phylogeny , Ticks/drug effects , Ticks/genetics
3.
J Med Entomol ; 49(3): 589-94, 2012 May.
Article in English | MEDLINE | ID: mdl-22679866

ABSTRACT

This study reports the baculovirus expression and biochemical characterization of recombinant acetylcholinesterase from Haematobia irritans (L.) (rHiAChE) and the effect of the previously described G262A mutation on enzyme activity and sensitivity to selected organophosphates. The rHiAChE was confirmed to be an insect AChE2-type enzyme with substrate preference for acetylthiocholine (Km 31.3 microM) over butyrylthiocholine (Km 63.4 microM) and inhibition at high substrate concentration. Enzyme activity was strongly inhibited by eserine (2.3 x 10(-10) M), BW284c51 (3.4 x 10(-8) M), malaoxon (3.6 x 10(-9) M), and paraoxon (1.8 x 10(-7) M), and was less sensitive to the butyrylcholinesterase inhibitors ethopropazine (1.1 x 10(-6) M) and iso-OMPA (4.1 x 10(-4) M). rHiAChE containing the G262A substitution exhibited decreased substrate affinity for both acetylthiocholine (Km 40.9 microM) and butyrylthiocholine (Km 96.3 microM), and exhibited eight-fold decreased sensitivity to paraoxon, and approximately 1.5- to 3-fold decreased sensitivity to other inhibitors. The biochemical kinetics are consistent with previously reported bioassay analysis, suggesting that the G262A mutation contributes to, but is not solely responsible for observed phenotypic resistance to diazinon or other organophosphates.


Subject(s)
Acetylcholinesterase/metabolism , Insecticide Resistance/genetics , Insecticides , Muscidae/enzymology , Organophosphates , Acetylcholinesterase/genetics , Animals , Baculoviridae/enzymology , Muscidae/genetics , Point Mutation , Recombinant Proteins/metabolism
4.
Parasit Vectors ; 5: 38, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22333193

ABSTRACT

BACKGROUND: Alternative strategies are required to control the southern cattle tick, Rhipicephalus microplus, due to evolving resistance to commercially available acaricides. This invasive ectoparasite is a vector of economically important diseases of cattle such as bovine babesiosis and anaplasmosis. An understanding of the biological intricacies underlying vector-host-pathogen interactions is required to innovate sustainable tick management strategies that can ultimately mitigate the impact of animal and zoonotic tick-borne diseases. Tick saliva contains molecules evolved to impair host innate and adaptive immune responses, which facilitates blood feeding and pathogen transmission. Antigen presenting cells are central to the development of robust T cell responses including Th1 and Th2 determination. In this study we examined changes in co-stimulatory molecule expression and cytokine response of bovine macrophages exposed to salivary gland extracts (SGE) obtained from 2-3 day fed, pathogen-free adult R. microplus. METHODS: Peripheral blood-derived macrophages were treated for 1 hr with 1, 5, or 10 µg/mL of SGE followed by 1, 6, 24 hr of 1 µg/mL of lipopolysaccharide (LPS). Real-time PCR and cytokine ELISA were used to measure changes in co-stimulatory molecule expression and cytokine response. RESULTS: Changes were observed in co-stimulatory molecule expression of bovine macrophages in response to R. microplus SGE exposure. After 6 hrs, CD86, but not CD80, was preferentially up-regulated on bovine macrophages when treated with 1 µg/ml SGE and then LPS, but not SGE alone. At 24 hrs CD80, CD86, and CD69 expression was increased with LPS, but was inhibited by the addition of SGE. SGE also inhibited LPS induced upregulation of TNFα, IFNγ and IL-12 cytokines, but did not alter IL-4 or CD40 mRNA expression. CONCLUSIONS: Molecules from the salivary glands of adult R. microplus showed bimodal concentration-, and time-dependent effects on differential up-regulation of CD86 in bovine macrophages activated by the TLR4-ligand, LPS. Up regulation of proinflammatory cytokines and IL-12, a Th1 promoting cytokine, were inhibited in a dose-dependent manner. The co-stimulatory molecules CD80, as well as the cell activation marker, CD69, were also suppressed in macrophages exposed to SGE. Continued investigation of the immunomodulatory factors will provide the knowledge base to research and develop therapeutic or prophylactic interventions targeting R. microplus-cattle interactions at the blood-feeding interface.


Subject(s)
Cattle Diseases/immunology , Ectoparasitic Infestations/veterinary , Host-Parasite Interactions , Macrophages/immunology , Rhipicephalus/immunology , Salivary Glands/immunology , Animals , Antigens, CD/biosynthesis , Antigens, Differentiation, T-Lymphocyte/biosynthesis , B7-1 Antigen/biosynthesis , B7-2 Antigen/biosynthesis , Cattle , Cells, Cultured , Cytokines/metabolism , Ectoparasitic Infestations/immunology , Enzyme-Linked Immunosorbent Assay , Gene Expression Profiling , Lectins, C-Type/biosynthesis , Real-Time Polymerase Chain Reaction
5.
Parasit Vectors ; 3: 103, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-21054882

ABSTRACT

BACKGROUND: Tick parasitism is a major impediment for cattle production in many parts of the world. The southern cattle tick, Rhipicephalus (Boophilus) microplus, is an obligate hematophagous parasite of domestic and wild animals that serves as vector of infectious agents lethal to cattle. Tick saliva contains molecules evolved to modulate host innate and adaptive immune responses which facilitates blood feeding and pathogen transmission. Tick feeding promotes CD4 T cell polarization to a Th2 profile usually accompanied by down-regulation of Th1 cytokines through as yet undefined mechanisms. Co-stimulatory molecules on antigen presenting cells are central to development of T cell responses including Th1 and Th2 responses. Tick induced changes to antigen presenting cell signal transduction pathways are largely unknown. Here we document the ability of R. microplus salivary gland extracts (SGE) to effect differential CD86 expression. RESULTS: We examined changes in co-stimulatory molecule expression in murine RAW 264.7 cells in response to R. microplus SGE exposure in the presence of the toll-like receptor 4 (TLR4) ligand, LPS. After 24 hrs, CD86, but not CD80, was preferentially up-regulated on mouse macrophage RAW 264.7 cells when treated with SGE and then LPS, but not SGE alone. CD80 and CD40 expression was increased with LPS, but the addition of SGE did not alter expression. Higher concentrations of SGE were less effective at increasing CD86 RNA expression. The addition of mitogen or extracellular kinase (MEK) inhibitor, PD98059, significantly reduced the ability for SGE to induce CD86 expression, indicating activation of MEK is necessary for SGE induced up-regulation. CONCLUSIONS: Molecules in SGE of R. microplus have a concentration-dependent effect on differential up-regulation of CD86 in a macrophage cell line activated by the TLR4 ligand, LPS. This CD86 up-regulation is at least partially dependent on the ERK1/2 pathway and may serve to promote Th2 polarization of the immune response.

6.
Methods Mol Biol ; 456: 221-9, 2008.
Article in English | MEDLINE | ID: mdl-18516564

ABSTRACT

Adipose tissue contains cell types other than adipocytes that may contribute to complications linked to obesity. For example, macrophages have been shown to infiltrate adipose tissue in response to a high-fat diet. Isolation of the stromal-vascular fraction of adipose tissue allows one to use flow cytometry to analyze cell surface markers on leukocytes. Here, we present a technical approach to identify subsets of leukocytes that differentially express cell surface markers.


Subject(s)
Adipose Tissue, White/cytology , Blood Vessels/cytology , Flow Cytometry/methods , Leukocytes/cytology , Stromal Cells/cytology , Biomarkers/metabolism , Cell Separation/methods , Flow Cytometry/instrumentation , Humans , Leukocytes/classification , Leukocytes/metabolism , Magnetics
7.
Am J Physiol Cell Physiol ; 291(6): C1232-9, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16807303

ABSTRACT

Obesity has been linked to cardiovascular disease, hypertension, diabetes and the metabolic syndrome, with elevated markers of systemic inflammation. Intercellular adhesion molecule-1 (ICAM-1) is a transmembrane adhesion molecule involved in leukocyte migration to sites of inflammation. In human obesity, elevated expression of the soluble form of ICAM-1 (sICAM-1) is positively correlated with abdominal fat deposition. Increases in adiposity have also been correlated with macrophage infiltration into adipose tissue. Here we investigate adipose tissue production and transcriptional regulation of ICAM-1 in a mouse model of dietary obesity. After feeding mice a high-fat diet, ICAM-1 expression in serum and adipose tissue was analyzed by ELISA, Northern blotting, real-time quantitative PCR, and flow cytometry. After 6 mo on the high-fat diet, sICAM-1 levels significantly correlated with body weight and abdominal fat mass. ICAM-1 mRNA was expressed in adipose tissue of mice, with significantly higher levels in males than females. After only 3 wk, there were adipose tissue-specific increases in mRNAs for ICAM-1, IL-6, and monocyte chemoattractant protein-1 (MCP-1) in male mice. Analysis of the stromal-vascular fraction of male adipose tissue revealed CD11b-negative cells with increased surface ICAM-1 and CD34. We also found two populations of F4/80+, CD11b+, ICAM-1+ cells, one of which also expressed CD14 and CD11c and was increased in response to a high-fat diet. These results indicate that within 3 wk on a high-fat diet, male mice exhibited significant increases in pro-inflammatory factors and immune cell infiltration in adipose tissue that may represent links between obesity and its associated inflammatory complications.


Subject(s)
Adipose Tissue/metabolism , Diet , Intercellular Adhesion Molecule-1/metabolism , Obesity/metabolism , Adipose Tissue/cytology , Animals , Antigens, CD/metabolism , Antigens, Differentiation/metabolism , Body Weight , Cytokines/metabolism , Dietary Fats , Female , Humans , Intercellular Adhesion Molecule-1/genetics , Male , Mice , Mice, Inbred C57BL , Obesity/immunology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcription, Genetic
8.
Cell Signal ; 16(2): 271-80, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14636897

ABSTRACT

CD86 expression is up-regulated in activated monocytes and macrophages by a mechanism that is not clearly defined. Here, we report that IL-4-dependent CD86 expression requires activation of ERK1/2 and JAK/STAT6 but is negatively regulated by PKCdelta. PMA differentiated U937 monocytic cells when stimulated with IL-4 increased CD11b and CD86 expression by 52- and 98-fold, respectively. PMA+IL-4 treatment also induced a synergistic enhancement of ERK1/2 activation when compared to the effects of PMA and IL-4 alone. Use of the mitogen or extracellular kinase (MEK) inhibitor, PD98059, completely blocked up-regulation of CD11b and CD86 demonstrating the importance of MEK-activated ERK1/2. JAK inhibition with WHI-P154-abrogated IL-4-dependent CD11b and CD86 up-regulation and inhibited STAT6 tyrosine phosphorylation. Importantly, CD11b and CD86 expression were not reliant on IL-4-dependent activation of phosphatidylinositol 3'-kinase (PI 3-kinase). Blockade of PKCdelta activation with rottlerin prevented CD11b expression but lead to a 75- and 213-fold increase in PMA and PMA+IL-4-dependent CD86 expression, respectively. As anticipated, increasing PKCdelta activity with anti-sense reduction of CD45 increased CD11b expression and reduced CD86 expression. Likewise, rottlerin prevented nuclear localization of activated PKCdelta. We conclude from these data that IL-4-dependent CD11b expression relies predominantly on enhanced activation of ERK1/2, while IL-4-dependent CD86 expression utilizes the JAK/STAT6 pathway.


Subject(s)
Antigens, CD/metabolism , CD11b Antigen/metabolism , Interleukin-4/pharmacology , Membrane Glycoproteins/metabolism , Monocytes/cytology , Protein Kinase C/metabolism , Acetophenones/pharmacology , Antigens, CD/immunology , B7-2 Antigen , Benzopyrans/pharmacology , CD11b Antigen/immunology , Cell Differentiation , Cell Nucleus/metabolism , Cells, Cultured , Enzyme Activation , Enzyme Inhibitors , Flavonoids/pharmacology , Humans , Membrane Glycoproteins/immunology , Mitogen-Activated Protein Kinases , Monocytes/metabolism , Phorbol Esters , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Protein Kinase C/antagonists & inhibitors , Protein Kinase C-delta , Quinazolines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...