Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-497749

ABSTRACT

The RNA modification N6-methyladenosine (m6A) plays a key role in the life cycles of several RNA viruses. Whether this applies to SARS-CoV-2 and whether m6A affects the outcome of COVID-19 disease is still poorly explored. Here we report that the RNA demethylase FTO strongly affects both m6A marking of SARS-CoV-2 and COVID-19 severity. By m6A profiling of SARS-CoV-2, we confirmed in infected cultured cells and showed for the first time in vivo in hamsters that the regions encoding TRS_L and the nucleocapsid protein are multiply marked by m6A, preferentially within RRACH motifs that are specific to {beta}-coronaviruses and well conserved across SARS-CoV-2 variants. In cells, downregulation of the m6A demethylase FTO, occurring upon SARS-CoV-2 infection, increased m6A marking of SARS-CoV-2 RNA and slightly promoted viral replication. In COVID-19 patients, a negative correlation was found between FTO expression and both SARS-CoV-2 expression and disease severity. FTO emerged as a classifier of disease severity and hence a potential stratifier of COVID-19 patients.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-196519

ABSTRACT

How innate and adaptive lung immune responses to SARS-CoV-2 synchronize during COVID-19 pneumonitis and regulate disease severity is poorly established. To address this, we applied single-cell profiling to bronchoalveolar lavages from 44 patients with mild or critical COVID-19 versus non-COVID-19 pneumonia as control. Viral RNA-tracking delineated the infection phenotype to epithelial cells, but positioned mainly neutrophils at the forefront of viral clearance activity during COVID-19. In mild disease, neutrophils could execute their antiviral function in an immunologically controlled fashion, regulated by fully-differentiated T-helper-17 (TH17)-cells, as well as T-helper-1 (TH1)-cells, CD8+ resident-memory (TRM) and partially-exhausted (TEX) T-cells with good effector functions. This was paralleled by orderly phagocytic disposal of dead/stressed cells by fully-differentiated macrophages, otherwise characterized by anti-inflammatory and antigen-presenting characteristics, hence facilitating lung tissue repair. In critical disease, CD4+ TH1- and CD8+ TEX-cells were characterized by inflammation-associated stress and metabolic exhaustion, while CD4+ TH17- and CD8+ TRM-cells failed to differentiate. Consequently, T-cell effector function was largely impaired thereby possibly facilitating excessive neutrophil-based inflammation. This was accompanied by impaired monocyte-to-macrophage differentiation, with monocytes exhibiting an ATP-purinergic signalling-inflammasome footprint, thereby enabling COVID-19 associated fibrosis and worsening disease severity. Our work represents a major resource for understanding the lung-localised immunity and inflammation landscape during COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...