Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 44(7): 3238-3252, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35877447

ABSTRACT

In aquafeeds in which plant proteins are used to replace fishmeal, exogenous methionine (Met) sources are demanded to balance the amino acid composition of diets and meet the metabolic fish requirements. Nonetheless, since different synthetic Met sources are commercially available, it is important to determine their bioavailability and efficacy. To address this issue, we conducted a two-month feeding trial with rainbow trout (Oncorhynchus mykiss), which were fed diets supplemented with five different forms of Met: Met-Met, L-Met, HMTBa, DL-Met, and Co DL-Met. No differences in growth performance were found in trout fed with different Met forms, but changes in the whole-body composition were found. In particular, Met-Met and L-Met promoted a significant body lipid reduction, whereas the protein retention was significantly increased in fish fed with HMTBa and Co DL-Met. The latter affected the hepatic Met metabolism promoting the trans-sulfuration pathway through the upregulation of CBS gene expression. Similarly, the L-Met enhanced the remethylation pathway through an increase in BHMT gene expression to maintain the cellular demand for Met. Altogether, our findings suggest an optimal dietary intake of all tested Met sources with similar promoting effects on fish growth and hepatic Met metabolism. Nevertheless, the mechanisms underlying these effects warrant further investigation.

2.
Animals (Basel) ; 11(4)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807244

ABSTRACT

Microalgal oils (AOs) emerged recently as an alternative to fish oil and to nutritionally poorer vegetable oils for fish species. In this trial, two experimental diets containing fish oil (negative control: 2.1%; positive control: 13.8%) and two diets incorporating AO at 3.5 and 0.7% were fed to grow out gilthead seabream (Sparus aurata) of 64.5 g initial body weight. After 110 days of experimental feeding, performance (final body weight mean = 147 g) and survival (>99%) were similar across treatments. The highest eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) content in positive control (PC) and 3.5 AO feeds (3.11 and 2.18% of diet, respectively) resulted in the highest EPA + DHA deposition in the fillets (18.40 and 12.36 g/100 g fatty acid, respectively), which entirely reflected the dietary fatty acid profile. Feed and fillets from fish fed the AO diets had lower levels of dioxins and polychlorinated biphenyls (PCBs). Moreover, sensory quality of AO fillets scored equally to the PC fish. Collectively, these findings offer a more resilient means for sustaining the future growth of seabream aquaculture, whilst maintaining the nutritional value of the resulting seafood. The data supports the addition of seabream to the list of aquaculture species where microalgal oil can be used as an ingredient to fulfil their challenging nutritional demands.

3.
PLoS One ; 13(3): e0193652, 2018.
Article in English | MEDLINE | ID: mdl-29509788

ABSTRACT

Animal by-product meals from the rendering industry could provide a sustainable and commercially viable alternative to fishmeal (FM) in aquaculture, as they are rich in most essential amino acids and contain important amounts of water-soluble proteins that improve feed digestibility and palatability. Among them, poultry by-product meal (PBM) have given encouraging results in rainbow trout (Oncorhynchus mykiss). However, the introduction of new ingredients in the diet needs to be carefully evaluated since diet is one of the main factors affecting the gut microbiota, which is a complex community that contributes to host metabolism, nutrition, growth, and disease resistance. Accordingly, we investigated the effects of partial replacement of dietary FM with a mix of animal by-product meals and plant proteins on intestinal microbiota composition of rainbow trout in relation to growth and feeding efficiency parameters. We used 1540 trout with an initial mean body weight of 94.6 ± 14.2 g. Fish were fed for 12 weeks with 7 different feed formulations. The growth data showed that trout fed on diets rich in animal by-product meals grew as well as fish fed on control diet, which was rich in FM (37.3%) and PBM-free. High-throughput 16S rRNA gene amplicon sequencing (MiSeq platform, Illumina) was utilised to study the gut microbial community profile. After discarding Cyanobacteria (class Chloroplast) and mitochondria reads a total of 2,701,274 of reads taxonomically classified, corresponding to a mean of 96,474 ± 68,056 reads per sample, were obtained. Five thousand three hundred ninety-nine operational taxonomic units (OTUs) were identified, which predominantly mapped to the phyla of Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. The ratio between vegetable and animal proteins proved to play a central role in determining microbiome profiles and Firmicutes and Proteobacteria phyla were particularly discriminatory for diet type in trout. Plant ingredients favoured a higher Firmicutes:Proteobacteria ratio than animal proteins. Acceptable abundance of Firmicutes was guaranteed by including at least 25% of vegetable proteins in the diet regardless of animal protein source and percentage. In summary animal by-product meals, as replacements to FM, gave good results in terms of growth performances and did not induce significant changes in gut microbial richness, thus proving to be a suitable protein source for use in rainbow trout aqua feed.


Subject(s)
Animal Feed , Aquaculture/methods , Gastrointestinal Microbiome , Oncorhynchus mykiss/microbiology , Amino Acids/analysis , Animal Feed/analysis , Animals , Biodiversity , Diet , Fatty Acids/analysis , Feces/microbiology , Female , Gastrointestinal Microbiome/genetics , Oncorhynchus mykiss/growth & development , Plant Proteins, Dietary/analysis , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Random Allocation , Sequence Analysis, RNA
4.
Article in English | MEDLINE | ID: mdl-19393760

ABSTRACT

Concern over the use of dietary antibiotics in aquaculture has encouraged the industry to search for alternatives that both enhance performance and afford protection from disease. Bio-Mos, derived from the outer cell wall of a specific strain of yeast Saccharomyces cerevisiae (Alltech Inc, USA) is a product that fits these criteria. Here, we present data on the impact of a Bio-Mos supplemented diet on the mRNA copy number of the antimicrobial peptide dicentracin, whose transcript regulation has not yet been explored in fish.We analyzed Bio-Mos-induced changes in the expression of sea bass (Dicentrarchus labrax) dicentracin,using a one-tube two-temperature real-time RT-PCR with which the gene expression can be absolutely quantified using the standard curve method. Our results revealed that 30 days of feeding fish with diets containing Bio-Mos supplemented at either 3 per thousand or 5 per thousand significantly increased the dicentracin mRNA copy number in the head kidney. Furthermore, the mRNA copy number in fish fed at 3 per thousand was significantly higher than that of the group fed at 5 per thousand for the same period of feeding Bio-Mos. A longer feeding period (60 days)did not further increase the dicentracin transcript levels as compared to the values recorded after 30 days of feeding either in the group fed at 3 per thousand or in the one fed at 5 per thousand diet. However, the transcript levels in fish fed at 3 per thousand proved to be significantly higher than those of the controls after 60 days of feeding. These findings offer new information about the response of antimicrobial peptides at the transcriptional level to diets supplemented with immune response modulators, and support a role of Bio-Mos in promoting sea bass nonspecific immune system.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bass , Dietary Supplements , Fish Proteins/genetics , Gene Expression Regulation , Animals , Aquaculture/methods , Bass/genetics , Bass/metabolism , Fish Proteins/metabolism , Humans , Reverse Transcriptase Polymerase Chain Reaction/methods
5.
Comp Biochem Physiol B Biochem Mol Biol ; 152(4): 306-16, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19162213

ABSTRACT

The expression and regulation of sodium-independent glucose transporter (GLUT)-2, in relation to hypoxia has not yet been explored in fish or other vertebrates. In this study, the complete open-reading frame for sea bass GLUT2 was isolated and deposited in the GenBank. The predicted 12 transmembrane domains of the protein (508 amino acids) are presented. A phylogenetic tree was constructed on GLUT2 sequences of sea bass and those of other teleost, amphibian, avian, and mammalian species. We also analyzed acute and chronic hypoxia-induced changes in the expression of hepatic GLUT2 mRNA, using one-tube, two-temperature, real-time RT-PCR with which gene expression can be absolutely quantified by the standard curve method. The number of GLUT2 mRNA copies was significantly increased in response to both acute (1.9 mg/L, dissolved oxygen for 4 h) and chronic (4.3 mg/L, DO for 15 days) hypoxia conditions. The hypoxia-related changes in GLUT2 mRNA copy number support the view that GLUT2 is involved in the adaptation response to hypoxia in sea bass, a marine hypoxia-sensitive species. We realize that the GLUT2 mRNA levels in our study do not measure the physiological effects produced by the protein. Thus, we can only speculate that, under hypoxic conditions, GLUT2 probably functions to allow the glucose produced from liver glycogen to leave the hepatocytes.


Subject(s)
Bass/genetics , Fish Diseases/genetics , Fish Diseases/pathology , Gene Expression Regulation/genetics , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Hypoxia/veterinary , Acute Disease , Amino Acid Sequence , Animals , Chronic Disease , Cloning, Molecular , Gene Expression Profiling , Hypoxia/genetics , Molecular Sequence Data , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...