Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Med ; 220(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-37642941

ABSTRACT

Targeting the PI3K-AKT-mTOR pathway is a promising therapeutic strategy for breast cancer treatment. However, low response rates and development of resistance to PI3K-AKT-mTOR inhibitors remain major clinical challenges. Here, we show that MYC activation drives resistance to mTOR inhibitors (mTORi) in breast cancer. Multiomic profiling of mouse invasive lobular carcinoma (ILC) tumors revealed recurrent Myc amplifications in tumors that acquired resistance to the mTORi AZD8055. MYC activation was associated with biological processes linked to mTORi response and counteracted mTORi-induced translation inhibition by promoting translation of ribosomal proteins. In vitro and in vivo induction of MYC conferred mTORi resistance in mouse and human breast cancer models. Conversely, AZD8055-resistant ILC cells depended on MYC, as demonstrated by the synergistic effects of mTORi and MYCi combination treatment. Notably, MYC status was significantly associated with poor response to everolimus therapy in metastatic breast cancer patients. Thus, MYC is a clinically relevant driver of mTORi resistance that may stratify breast cancer patients for mTOR-targeted therapies.


Subject(s)
Breast Neoplasms , Humans , Animals , Mice , Female , Breast Neoplasms/drug therapy , MTOR Inhibitors , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases
2.
Nat Commun ; 14(1): 183, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635273

ABSTRACT

Cancer-associated fibroblasts (CAFs) are abundantly present in the microenvironment of virtually all tumors and strongly impact tumor progression. Despite increasing insight into their function and heterogeneity, little is known regarding the origin of CAFs. Understanding the origin of CAF heterogeneity is needed to develop successful CAF-based targeted therapies. Through various transplantation studies in mice, we show that CAFs in both invasive lobular breast cancer and triple-negative breast cancer originate from mammary tissue-resident normal fibroblasts (NFs). Single-cell transcriptomics, in vivo and in vitro studies reveal the transition of CD26+ and CD26- NF populations into inflammatory CAFs (iCAFs) and myofibroblastic CAFs (myCAFs), respectively. Functional co-culture experiments show that CD26+ NFs transition into pro-tumorigenic iCAFs which recruit myeloid cells in a CXCL12-dependent manner and enhance tumor cell invasion via matrix-metalloproteinase (MMP) activity. Together, our data suggest that CD26+ and CD26- NFs transform into distinct CAF subpopulations in mouse models of breast cancer.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Female , Dipeptidyl Peptidase 4/genetics , Fibroblasts , Cancer-Associated Fibroblasts/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Myofibroblasts/pathology , Tumor Microenvironment , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor
3.
Nat Commun ; 13(1): 6579, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323660

ABSTRACT

The limited efficacy of immune checkpoint inhibitor treatment in triple-negative breast cancer (TNBC) patients is attributed to sparse or unresponsive tumor-infiltrating lymphocytes, but the mechanisms that lead to a therapy resistant tumor immune microenvironment are incompletely known. Here we show a strong correlation between MYC expression and loss of immune signatures in human TNBC. In mouse models of TNBC proficient or deficient of breast cancer type 1 susceptibility gene (BRCA1), MYC overexpression dramatically decreases lymphocyte infiltration in tumors, along with immune signature remodelling. MYC-mediated suppression of inflammatory signalling induced by BRCA1/2 inactivation is confirmed in human TNBC cell lines. Moreover, MYC overexpression prevents the recruitment and activation of lymphocytes in both human and mouse TNBC co-culture models. Chromatin-immunoprecipitation-sequencing reveals that MYC, together with its co-repressor MIZ1, directly binds promoters of multiple interferon-signalling genes, resulting in their downregulation. MYC overexpression thus counters tumor growth inhibition by a Stimulator of Interferon Genes (STING) agonist via suppressing induction of interferon signalling. Together, our data reveal that MYC suppresses innate immunity and facilitates tumor immune escape, explaining the poor immunogenicity of MYC-overexpressing TNBCs.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Interferons , Lymphocytes, Tumor-Infiltrating , Signal Transduction , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment/genetics , Proto-Oncogene Proteins c-myc/metabolism
4.
Front Immunol ; 11: 1820, 2020.
Article in English | MEDLINE | ID: mdl-33013832

ABSTRACT

Galectin-3 (Gal-3) is an extracellular matrix glycan-binding protein with several immunosuppressive and pro-tumor functions. The role of Galectin-3 in cancer stem-like cells (CSCs) is poorly investigated. Here, we show that prostate CSCs also colonizing prostate-draining lymph nodes of transgenic adenocarcinoma of the mouse prostate (TRAMP) mice overexpress Gal-3. Gal-3 contributes to prostate CSC-mediated immune suppression because either Gal-3 silencing in CSCs, or co-culture of CSCs and T cells in the presence of the Gal-3 inhibitor N-Acetyl-D-lactosamine rescued T cell proliferation. N-Acetyl-D-lactosamine also rescued the proliferation of T cells in prostate-draining lymph nodes of TRAMP mice affected by prostate intraepithelial neoplasia. Additionally, Gal-3 impacted prostate CSC tumorigenic and metastatic potential in vivo, as Gal-3 silencing in prostate CSCs reduced both primary tumor growth and secondary invasion. Gal-3 was also found expressed in more differentiated prostate cancer cells, but with different intracellular distribution as compared to CSCs, which suggests different functions of Gal-3 in the two cell populations. In fact, the prevalent nuclear and cytoplasmic distribution of Gal-3 in prostate CSCs made them less susceptible to apoptosis, when compared to more differentiated prostate cancer cells, in which Gal-3 was predominantly intra-cytoplasmic. Finally, we found Gal-3 expressed in human and mouse prostate intraepithelial neoplasia lesions and in metastatic lymph nodes. All together, these findings identify Gal-3 as a key molecule and a potential therapeutic target already in the early phases of prostate cancer progression and metastasis.


Subject(s)
Adenocarcinoma/metabolism , Galectin 3/metabolism , Neoplastic Stem Cells/metabolism , Prostatic Intraepithelial Neoplasia/metabolism , Prostatic Neoplasms/metabolism , Tumor Escape , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/secondary , Animals , Blood Proteins , Cell Line, Tumor , Cell Proliferation , Coculture Techniques , Galectin 3/genetics , Galectins , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Neoplastic Stem Cells/immunology , Prostatic Intraepithelial Neoplasia/genetics , Prostatic Intraepithelial Neoplasia/immunology , Prostatic Intraepithelial Neoplasia/secondary , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Signal Transduction , Tumor Microenvironment
5.
Nat Commun ; 10(1): 397, 2019 01 23.
Article in English | MEDLINE | ID: mdl-30674894

ABSTRACT

BRCA1-mutated breast cancer is primarily driven by DNA copy-number alterations (CNAs) containing large numbers of candidate driver genes. Validation of these candidates requires novel approaches for high-throughput in vivo perturbation of gene function. Here we develop genetically engineered mouse models (GEMMs) of BRCA1-deficient breast cancer that permit rapid introduction of putative drivers by either retargeting of GEMM-derived embryonic stem cells, lentivirus-mediated somatic overexpression or in situ CRISPR/Cas9-mediated gene disruption. We use these approaches to validate Myc, Met, Pten and Rb1 as bona fide drivers in BRCA1-associated mammary tumorigenesis. Iterative mouse modeling and comparative oncogenomics analysis show that MYC-overexpression strongly reshapes the CNA landscape of BRCA1-deficient mammary tumors and identify MCL1 as a collaborating driver in these tumors. Moreover, MCL1 inhibition potentiates the in vivo efficacy of PARP inhibition (PARPi), underscoring the therapeutic potential of this combination for treatment of BRCA1-mutated cancer patients with poor response to PARPi monotherapy.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Carcinogenesis/genetics , DNA Copy Number Variations/genetics , Gene Expression Regulation, Neoplastic/genetics , Mutation , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Transformation, Neoplastic/genetics , Collagen Type I/genetics , Collagen Type I, alpha 1 Chain , Embryonic Stem Cells , Female , Gene Regulatory Networks , HEK293 Cells , Humans , Mammary Neoplasms, Animal/genetics , Mice , Mice, Transgenic , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Transcriptome , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL