Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(D1): D1694-D1698, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953359

ABSTRACT

Vesiclepedia (http://www.microvesicles.org) is a free web-based compendium of DNA, RNA, proteins, lipids and metabolites that are detected or associated with extracellular vesicles (EVs) and extracellular particles (EPs). EVs are membranous vesicles that are secreted ubiquitously by cells from all domains of life from archaea to eukaryotes. In addition to EVs, it was reported recently that EPs like exomeres and supermeres are secreted by some mammalian cells. Both EVs and EPs contain proteins, nucleic acids, lipids and metabolites and has been proposed to be implicated in several key biological functions. Vesiclepedia catalogues proteins, DNA, RNA, lipids and metabolites from both published and unpublished studies. Currently, Vesiclepedia contains data obtained from 3533 EV studies, 50 550 RNA entries, 566 911 protein entries, 3839 lipid entries, 192 metabolite and 167 DNA entries. Quantitative data for 62 822 entries from 47 EV studies is available in Vesiclepedia. The datasets available in Vesiclepedia can be downloaded as tab-delimited files or accessible through the FunRich-based Vesiclepedia plugin.


Subject(s)
Extracellular Vesicles , Animals , Extracellular Vesicles/metabolism , Proteins/metabolism , RNA/metabolism , DNA/metabolism , Lipids , Mammals
2.
Proteomics ; 23(15): e2100314, 2023 08.
Article in English | MEDLINE | ID: mdl-37309723

ABSTRACT

Cancer cachexia is a wasting syndrome characterised by the loss of fat and/or muscle mass in advanced cancer patients. It has been well-established that cancer cells themselves can induce cachexia via the release of several pro-cachectic and pro-inflammatory factors. However, it is unclear how this process is regulated and the key cachexins that are involved. In this study, we validated C26 and EL4 as cachexic and non-cachexic cell models, respectively. Treatment of adipocytes and myotubes with C26 conditioned medium induced lipolysis and atrophy, respectively. We profiled soluble secreted proteins (secretome) as well as small extracellular vesicles (sEVs) released from cachexia-inducing (C26) and non-inducing (EL4) cancer cells by label-free quantitative proteomics. A total of 1268 and 1022 proteins were identified in the secretome of C26 and EL4, respectively. Furthermore, proteomic analysis of sEVs derived from C26 and EL4 cancer cells revealed a distinct difference in the protein cargo. Functional enrichment analysis using FunRich highlighted the enrichment of proteins that are implicated in biological processes such as muscle atrophy, lipolysis, and inflammation in both the secretome and sEVs derived from C26 cancer cells. Overall, our characterisation of the proteomic profiles of the secretory factors and sEVs from cachexia-inducing and non-inducing cancer cells provides insights into tumour factors that promote weight loss by mediating protein and lipid loss in various organs and tissues. Further investigation of these proteins may assist in highlighting potential therapeutic targets and biomarkers of cancer cachexia.


Subject(s)
Extracellular Vesicles , Neoplasms , Humans , Muscle, Skeletal/metabolism , Cachexia/metabolism , Proteomics , Cell Line, Tumor , Extracellular Vesicles/metabolism , Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...